辐射检测器中的暗噪音补偿的制作方法

文档序号:17582284发布日期:2019-05-03 21:01阅读:178来源:国知局
辐射检测器中的暗噪音补偿的制作方法

本公开文涉及用于补偿诸如半导体x射线检测器之类的辐射检测器中的暗噪音影响的方法和装置。



背景技术:

辐射检测器是测量辐射特性的装置。所述特性的例子可包括所述辐射的强度的空间分布、相位以及偏振。所述辐射可以是与主体相互作用的辐射。例如,由辐射检测器测量的辐射可以是穿透主体或从主体反射的辐射。所述辐射可以是诸如红外光、可见光、紫外光、x射线或γ射线的电磁辐射。所述辐射可以是诸如α射线和β射线的其它类型。

一种类型的辐射检测器是基于辐射和半导体之间的相互作用。例如,这种类型的辐射检测器可以具有吸收辐射并产生载流子(例如,电子和空穴)的半导体层以及用于检测载流子的电路。

辐射检测器可受到“暗”噪音(例如,暗电流)的负面影响。辐射检测器中的暗噪音包括:即使没有辐射(该辐射检测器被配置成检测该辐射)入射到该辐射检测器上的情况下存在的物理效应。分离或减小暗噪音对由辐射检测器检测到的整体信号的影响有助于使辐射检测器更加有用。



技术实现要素:

本文公开了一种辐射检测器,该辐射检测器包括:包括电极的辐射吸收层;电容器模块,该电容器模块电连接到所述电极并包括电容器,其中所述电容模块配置成将来自所述电极的载流子收集到所述电容器上;与所述电容并联的电流源模块,所述电流源模块被配置成补偿所述辐射检测器中的暗噪音的电流,并且所述电流源模块包括电流源和调制器;其中所述电流源被配置为输出第一电流和第二电流;其中所述调制器被配置成控制所述电流源输出所述第一电流的持续时间与所述电流源输出所述第二电流的持续时间的比率。

根据实施例,电流源模块是可调节的。

根据实施例,电流源模块被配置成通过电流源模块转移暗噪音的电流。

根据实施例,第一电流和第二电流在它们的大小上不同、方向上不同或在两者上都不同。

根据实施例,第一电流和第二电流中的至少一者比暗噪音电流至少大一个数量级。

根据实施例,暗噪音的电流为从1pa到1000pa。

根据实施例,调制器包括处理器或内存。

根据实施例,调制器包括开关。

根据实施例,所述辐射是x射线。

根据实施例,电流源包括电流镜。

根据实施例,调制器位于电流镜的输入级上。

根据实施例,调制器包括被配置成以交替的幅值输出电流的电流源。

根据实施例,调制器包括电流源,该电流源被配置成输出具有可调节的持续时间比的两个幅度的电流。

根据实施例,调制器位于电流镜的输出级上。

根据实施例,调制器包括开关,该开关被配置成:可控制地将电流源模块与电容器连接,或可控制地将电流源模块与电容器断开。

根据实施例,所述辐射检测器进一步包括:第一电压比较器,该第一电压比较器被配置成将电极的电压与第一阈值进行比较;第二电压比较器,该第二电压比较器被配置成将所述电压与第二阈值进行比较;计数器,该计数器被配置成记录由所述x射线吸收层吸收的x射线光子数;控制器;其中所述控制器被配置成:从所述第一电压比较器确定所述电压的绝对值等于或超过所述第一阈值的绝对值的时刻开始时间延迟;其中所述控制器被配置成:在所述时间延迟期间激活所述第二电压比较器;其中所述控制器被配置成:如果所述第二电压比较器确定所述电压的绝对值等于或超过所述第二阈值的绝对值,那么,使所述计数器记录的数增加1。

根据实施例,所述控制器被配置成在时间延迟的开始或结束时激活所述第二电压比较器。

根据实施例,辐射检测器进一步包括电压表,其中,所述控制器被配置成在所述时间延迟终止时使所述电压表测量所述电压。

根据实施例,所述控制器被配置成基于在时间延迟终止时测量的电压的值,确定光子能量。

根据实施例,所述控制器被配置成将所述电极连接到电接地。

根据实施例,在所述时间延迟终止时,所述电压的变化率基本上是零。

根据实施例,在所述时间延迟终止时,所述电压的变化率基本上是非零。

根据实施例,所述辐射吸收层包括二极管。

根据实施例,所述辐射吸收层包括硅、锗、gaas、cdte、cdznte或其组合。

根据实施例,所述辐射检测器不包括闪烁体。

根据实施例,所述辐射检测器包括像素阵列。

本文公开了一种包括上述辐射检测器中的任何一个以及x射线源的系统,其中所述系统被配置成对人体胸部或腹部进行x射线照相。

本文公开了一种包括上述辐射检测器中的任何一个以及x射线源的系统,其中所述系统被配置成对人的嘴部进行x射线照相。

本文公开了一种包括上述辐射检测器中的任何一个以及x射线源的货物扫描或非侵入性检查(nii)系统,其中,所述货物扫描或非侵入性检查(nii)系统被配置成使用背散射x射线而形成图像。

本文公开了一种包括上述辐射检测器中的任何一个的辐射检测器以及x射线源的货物扫描或非侵入性检查(nii)系统,其中,所述货物扫描或非侵入性检查(nii)系统被配置为使用穿过被检查物体的x射线而形成图像。

本文公开了一种包括上述辐射检测器中的任何一个辐射检测器以及辐射源的全身扫描系统。

本文公开了一种包括上述辐射检测器中的任何一个辐射检测器以及辐射源的计算机断层摄影(ct)系统。

本文公开一种电子显微镜,其包括上述辐射检测器中任何一个的辐射检测器、电子源和电子光学系统。

本文公开了一种包括上述辐射检测器中任何一个的辐射检测器的系统,其中所述系统为x射线望远镜、或x射线显微镜,或者其中所述系统被配置成进行乳房摄影、工业缺陷检测、微成像、铸造检查、焊接检查、或数字减影血管摄影。

本文公开了一种包括下面各项的方法:确定辐射检测器的信号中暗噪音的贡献;基于暗噪音的贡献、第一补偿信号和第二补偿信号,确定第一补偿信号的持续时间与第二补偿信号的持续时间的比率;和以所述比率通过具有相应的所述持续时间的所述第一补偿信号和所述第二补偿信号,对所述辐射检测器的信号的所述暗噪音进行补偿。

根据实施例,通过测量辐射检测器在不接受辐射的时候测量的信号来确定所述贡献。

根据实施例,第一补偿信号和第二补偿信号是电流。

本文公开了包括下面各项的方法:当辐射检测器不接收辐射,并且辐射检测器的暗噪音有补偿的时候,测量辐射检测器的信号;如果所述信号超过第一电平,开始时间延迟;在时间延迟结束时测量辐射检测器的信号;如果所述时间延迟结束时所述信号超过第二电平,增加对暗噪音的补偿。

根据实施例,所述补偿被增加到一组离散值中的幅度。

根据实施例,所述方法进一步包括:如果所述时间延迟结束时的信号超过第二电平,则复位所述信号。

本文公开了包括下面各项的方法:当辐射检测器不接收辐射,并且辐射检测器的暗噪音有补偿的时候,测量辐射检测器的信号;如果所述信号超过第一电平,则开始时间延迟;在时间延迟结束时测量辐射检测器的信号;确定所述时间延迟结束时的信号与所述时间延迟开始时的信号之间的差;基于所述差值确定所述补偿的幅度。

【附图说明】

图1示意性地示出了根据实施例的辐射检测器。

图2a示意性地示出了辐射检测器的截面图。

图2b示意性地示出了辐射检测器的详细横截面视图。

图2c示意性地示出了辐射检测器的备选详细横截面视图。

图3a和图3b各自示出了根据实施例的图2c或图2b检测器的电子系统的部件图。

图4a和图4b分别示出了被配置成补偿暗噪音(电流形式)的电路。

图5示意性地示出了根据实施例的辐射检测器的电子系统中的电流源模块。

图6和图7示出了电流源模块的两个示例,这里所述电流源模块的电流源包括电流镜。

图8示意性地示出了所述电流源模块发出的电流,所述电容模块的电容上的归因于暗噪音以及所述电流源模块提供的电流的电压,电容器模块的电容器上的仅归因于暗噪音的电压(作为时间的函数)。

图9示意性地示出了电容器的作为时间函数的电压,其中电容器模块包括电流源模块。

图10示意性地示出了用于补偿辐射检测器中的暗噪音的方法的流程图。

图11a示意性地示出了用于补偿辐射检测器中的暗噪音的方法的流程图。

图11b示意性地示出了用于补偿辐射检测器中的暗噪音的方法的流程图。

图12-图17各自示意性地示出了包括本文所述的辐射检测器的系统。

【具体实施方式】

图1示意性地示出了作为示例的辐射检测器100。辐射检测器100具有像素150的阵列。该阵列可以是矩形阵列、蜂窝阵列、六边形阵列或任意其他合适的阵列。每个像素150被配置成检测入射于其上的来自辐射源的辐射,并且可被配置成测量所述辐射的特征(例如,粒子的能量、波长、以及频率)。例如,每个像素150被配置成在一段时间内对入射于其上的能量落入多个箱(bin)中的光子进行计数。所有像素150可被配置成在同一时间段内对入射于其上的能量落入多个箱中的光子进行计数。每个像素150可具有其自己的模数转换器(adc),其被配置成将表示入射光子能量的模拟信号数字化为数字信号。像素150可被配置成并联地操作。例如,当一个像素150测量入射光子时,另一像素150可等待光子到达。像素150可不必单独寻址。

图2a示意性地示出了根据实施例的辐射检测器100的截面图。辐射检测器100可包括辐射吸收层110和用于处理或分析入射辐射在辐射吸收层110中产生的电信号的电子层120(例如,asic)。检测器100可以包括或不包括闪烁体。辐射吸收层110可包括诸如硅、锗、gaas、cdte、cdznte或其组合的半导体材料。所述半导体对于感兴趣的辐射可具有高的质量衰减系数。

如图2b中的辐射检测器100的详细横截面图所示,根据实施例,辐射吸收层110可包括一个或多个二极管(例如,p-i-n或p-n)。所述二极体由第一掺杂区域111、第二掺杂区113中的一个或多个离散区域114构成。第二掺杂区113可由可选的本征区112与第一掺杂区111隔开。离散区114相互之间由第一掺杂区111或本征区112隔开。所述第一掺杂区111和所述第二掺杂区113具有相反类型的掺杂(例如,区域111为p型并且区域113为n型,或区域111为n型并且区域113为p型)。在图2b的示例中,第二掺杂区113中的每个离散区114与第一掺杂区111和可选的本征区112形成二极管。即,在图2b的示例中,所述辐射吸收层110具有多个二极管,所述多个二极管具有第一掺杂区域111作为共享电极。第一掺杂区域111也可以具有离散部分。

当来自辐射源的辐射击中包括二极管的辐射吸收层110时,辐射光子可通过多个机制被吸收并产生一个或多个载流子。载流子可在电场下漂移到其中一个二极管的电极。该电场可以是外部电场。电触点119b可包括离散部分,其每一个与离散区域114电接触。在实施例中,载流子可沿各方向漂移,以至于由所述辐射的单个粒子产生的载流子基本上不被两个不同的离散区域114共享(这里“基本不被共享”意味着:小于2%、小于0.5%、小于0.1%或小于0.01%的这些载流子流到离散区域114中与其余载流子不同的一个离散区域)。在这些离散区域114中的一个离散区域的足迹周围入射的辐射粒子产生的载流子基本上不与这些离散区域114中的另一个离散区域共享。与离散区域114相关联的像素150可以是这样的区域:该区域大致位于所述离散区114处,入射于其中的辐射粒子产生的载流子基本上全部(大于98%、大于99.5%、大于99.9%或大于99.99%)流入所述离散区域114。即,小于2%、小于1%、小于0.1%、或小于0.01%的这些载流子流到所述像素之外。

如图2c中的辐射检测器100的备选详细横截面图所示,根据实施例,辐射吸收层110可以包括诸如硅、锗、gaas、cdte、cdznte或其组合的半导体材料的电阻器,但不包括二极管。所述半导体对感兴趣的辐射可具有高的质量衰减系数。

当辐射击中包括电阻器但不包括二极管的辐射吸收层110时,它可通过多种机制被吸收并产生一个或多个载流子。辐射的一个粒子可产生10至100000个载流子。载流子可在电场下漂移到电触点119a和119b。该电场可以是外部电场。电触点119b包括离散部分。在实施例中,载流子可沿各方向漂移,以至于由辐射的单个粒子产生的载流子基本上不被电触点119b的两个不同的离散部分共享(这里“基本不被共享”意味着小于2%、小于0.5%、小于0.1%或小于0.01%的这些载流子流至所述离散部分中与其余载流子不同的一个离散部分)。在电触点119b的这些离散部分中的一个离散部分的足迹周围入射的辐射的粒子产生的载流子基本上不与电触点119b的这些离散部分中的另一个离散部分共享。与电触点119b的离散部分相关联的像素150是这样的区域:该区域大致位于所述离散部分处,入射于其中的辐射的粒子产生的载流子基本上全部(大于98%、大于99.5%、大于99.9%或大于99.99%)流到电触点119b的所述离散部分。即,小于2%、小于0.5%、小于0.1%或小于0.01%的这些载流子流到与电触点119b的所述一个离散部分相关联的像素之外。

电子层120可包括适于处理或解释入射于辐射吸收层110上的辐射所产生的信号的电子系统121。电子系统121可包括诸如滤波网络、放大器、积分器以及比较器的模拟电路,或诸如微处理器、以及内存的数字电路。电子系统121可包括一个或多个adc。电子系统121可包括像素之间共享的部件,或专用于单个像素的部件。例如,电子系统121可以包括专用于每个像素的放大器和在所有像素之间共享的微处理器。电子系统121可以通过通孔131与像素电连接,所述通孔中的空间可用填充材料130填充,这可增加电子层120与辐射吸收层110的连接的机械稳定性。其它结合技术将电子系统121连接到像素(不使用通孔)是可能的。

由入射到辐射吸收层110上的辐射产生的信号可以是电流的形式。同样地,暗噪音也可以是电流的形式(例如,流自电触点119b的dc电流)。如果电流可以被确定,则电流可因电子系统121(例如,从电子系统121转移)得到补偿。

图3a和图3b各自示出根据实施例的电子系统121的部件图。系统121包括电容器模块309,其被电连接到二极管300的电极或电触点,其中所述电容模块被配置成从所述电极收集载流子。电容器模块包括电容器,并且来自电极的载流子在一段时间(“整合周期”)(例如,如图4中所示,在t0到t1或t1-t2之间)上累积在电容器上。在整合周期结束后,电容器电压被采样,然后由复位开关复位。电容器模块可包括直接连接到电极的电容器。电容器可处于放大器的回馈路径中。这样配置的放大器被称为电容互阻抗放大器(ctia)。ctia通过不让放大器饱和而具有高的动态范围,并通过限制信号路径中的带宽来提高信噪比。

以电流形式存在的暗噪音,如果不被补偿,则和辐射产生的信号一起对电容器模块309中的电容器充电。

图4a和图4b分别示出被配置成补偿暗噪音(电流形式)的电路。电流源模块388与电容器并联。电流源模块388可以是可调节的,使得它发出的电流补偿暗噪音的电流。在图4a和图4b所示的电路中,暗噪音的电流通过电流源模块388转移,使得暗噪音的电流不对电容器充电。

暗噪音的电流可以是非常小的电流,例如在皮安(例如1-1000pa)范围。补偿小的电流可以是具有挑战性的。图5示意性地示出了根据实施例的电流源模块388。电流源模块388可包括电流源501和调制器502。电流源501被配置成输出第一电流和第二电流。第一电流和第二电流在它们的幅度上不同、方向上不同或两者上都不同。调制器502控制电流源501输出第一电流的持续时间与电流源501输出第二电流的持续时间的比率。第一电流和第二电流可以不像暗噪音的电流一样小,但是电流源模块388发出的电流的时间平均值(作为由调制器502的调制而得的结果),可以等于暗噪音的电流。例如,第一电流和第二电流中的至少一个比暗噪音的电流大至少一个数量级。例如,如果第一电流为1na且第二电流为0,所述比率为1:999,源自电流源模块388的电流的时间平均值为1pa。调制器502可与开关一样简单。调制器502可以具有诸如处理器或内存的复杂电路。

图6和图7示出了电流源模块388的两个示例,这里电流源501包括电流镜。电流镜是接收输入电流并输出与输入电流成比例的输出电流的电路。电流镜可被视为电流控制电流源(cccs)。电流镜可包括两个级联的电流-电压和电压-电流转换器(设置在相同的条件下并具有反向特性)。电流镜可使用如这里所示的mosfet电晶体来实现。可以使用双极结型电晶体来实现电流镜。如图6所示,调制器502可位于电流镜的输出级上。例如,调制器502可包括开关,该开关可控制地将电流源模块388与电容器模块309中的电容器连接、断开。如图7所示,调制器502可以位于电流镜的输入级上。调制器502可包括以交变幅度输出电流的电流源。调制器502可包括输出两个幅度电流的电流源,其具有可调节的持续时间比率。

图8示意性地示出了电流源模块388发出的电流601(作为时间的函数)。虚线602示出电流601的时间平均值。图8还示意性地示出了电容器模块309的电容器的电压602,其归因于暗噪音以及电流源模块388提供的电流(作为时间的函数)。图8还示意性地示出了仅归因于暗噪音的电容器模块309的电容器上的电压601(作为时间的函数)。从图8可以看出:电流源模块388提供电流,在时间平均上消除了暗噪音对电容器上的电压的影响。

图9示意性地示出了作为时间函数的电容器上的电压,这里电容器模块309包括电流源模块388。在图9中可以看到叠加到平滑变化的电压上的精细锯齿波形。锯齿波波形归因于暗噪音以及电流源模块388提供的电流(作为时间的函数)。

图10示意性地示出了用于补偿辐射检测器中暗噪音的方法的流程图。在程序2010中,辐射检测器的信号中的暗噪音的贡献2020被确定。例如,可以通过测量辐射检测器在不接受辐射的时候测量信号来确定所述贡献。在程序2030中,基于暗噪音的贡献2020、第一补偿信号2050和第二补偿信号2060,确定第一补偿信号2050的持续时间与第二补偿信号2060的持续时间的比率2040。例如,第一补偿信号2050和第二补偿信号2060可以是电流源501输出的第一电流和第二电流。在程序2070中,辐射检测器的信号的暗噪音被第一补偿信号2050和第二补偿信号2060补偿,第一补偿信号2050和第二补偿信号2060具有各自的持续时间,其比率为2040。

图11a示意性地示出了补偿辐射检测器中暗噪音的方法的流程图。在程序2110中,当辐射检测器不接收辐射并且存在对辐射检测器的暗噪音补偿的时候,测量辐射检测器的信号。在程序2120中,如果信号没有超过第一电平,流程返回程序2110;若信号超过第一电平,在程序2130中开始时间延迟。在程序2140中,如果在时间延迟结束时辐射检测器的信号被测量。在程序2150中,如果信号不超过第二电平,流程结束,并且补偿的当前幅度被认为足以补偿暗噪音的贡献;如果时间延迟结束时的信号超过第二电平,在程序2160中增加对暗噪音的补偿,在程序2170中复位信号,并且流程回到程序2110。或者,在程序2150中,如果信号不超过第二电平,在程序2180中降低第二电平,并且流程返回到程序2110;如果时间延迟结束时的信号超过第二电平,在程序2160中增加对暗噪音的补偿,在程序2170中复位信号,并且流程回到程序2110。当增加暗噪音的补偿时,可将其增加到一组离散值中的幅度。补偿的当前幅度可存储在辐射检测器的内存中。

图11b示意性地示出了补偿辐射检测器中暗噪音的方法的流程图。在程序2210中,当辐射检测器不接收辐射并且对辐射检测器的暗噪音的补偿存在的时候,测量辐射检测器的信号。在程序2220中,如果信号没有超过第一电平,流程回到程序2210;若信号超过第一电平,在程序2230中开始时间延迟。在程序2240中,如果时间延迟结束时的辐射检测器的信号被测量。在程序2250中,在时间延迟开始时的信号(其可以简单地是第一电平)与时间延迟结束时的信号之间的差被确定。在程序2260中,基于所述差,确定暗噪音的补偿的幅度。

除了包括电流源模块388的电容器模块309,电子系统121可进一步包括第一电压比较器301、第二电压比较器302、计数器320、开关305、电压表306和控制器310,如图3a和图3b所示。

第一电压比较器301被配置成将二极管300的电极的电压与第一阈值进行比较。二极体可以是由第一掺杂区域111、第二掺杂区113的离散区114中的一个、以及可选的本征区112形成。或者,第一电压比较器301被配置成将电触点(例如,电触点119b的离散部分)的电压与第一阈值进行比较。第一电压比较器301可被配置成直接监控电压,或通过在一段时间内对流经二极管或电触点的电流进行整合来计算电压。第一电压比较器301可由控制器310可控地激活或停用。第一电压比较器301可以是连续比较器。即,第一电压比较器301可被配置为连续地激活,并且连续地监控电压。第一电压比较器301被配置为连续比较器,减少了系统121错过由入射x射线光子产生的信号的可能性。当入射x射线强度相对较高时,配置为连续比较器的第一电压比较器301是特别合适的。第一电压比较器301可以是钟控比较器,其具有较低功耗的好处。配置为钟控比较器的第一电压比较器301可使系统121错过由一些入射x射线光子产生的信号。当入射x射线强度低时,由于两个连续光子之间的时间间隔相对较长,所以错过入射x射线光子的机会较低。因此,当入射x射线强度较低时,第一电压比较器301被配置为钟控比较器特别适合。第一阈值可以是一个入射x射线光子在二极体或电阻中产生的最大电压的5-10%、10%-20%、20-30%、30-40%或40-50%。所述最大电压可取决于入射x射线光子的能量(即,入射x射线的波长)、x射线吸收层110的材料以及其它因素。例如,第一阈值可以是50mv、100mv、150mv或200mv。

第二电压比较器302被配置成将电压与第二阈值进行比较。第二电压比较器302可被配置成直接监控电压,或通过将一段时间流过二极管或电触点的电流进行整合来计算所述电压。第二电压比较器302可以是连续比较器。第二电压比较器302可由控制器310可控地激活或停用。当第二电压比较器302被停用时,第二电压比较器302的功耗可以比第二电压比较器302被激活时的功耗小1%、小5%、小10%或小20%。第二阈值的绝对值大于第一阈值的绝对值。如本文中所使用的,术语实数x的“绝对值”或“模”|x|是x的不考虑其符号的非负值。即,第二阈值可以是第一阈值的200%-300%。第二阈值可以是一个入射x射线光子在二极管或电阻器中可产生的最大电压的至少50%。例如,第二阈值可以是100mv、150mv、200mv、250mv或300mv。第二电压比较器302和第一电压比较器301可以是相同的部件。即,系统121可以具有一个电压比较器,该电压比较器可以在不同的时间将电压与两个不同阈值进行比较。

第一电压比较器301或第二电压比较器302可包括一个或多个运算放大器或任何其它合适的电路。第一电压比较器301或第二电压比较器302可具有高的速度以允许系统121在入射x射线的高通量情况下工作。然而,具有高的速度常以功耗为代价。

计数器320被配置成记录到达二极管或电阻器的x射线光子数。计数器320可以是软件部件(例如,存储在计算机内存中的数字)或硬件部件(例如4017ic和7490ic)。

控制器310可以是诸如微控制器和微处理器之类的硬件部件。控制器310被配置成从第一电压比较器301确定电压绝对值等于或超过第一阈值的绝对值(例如,电压的绝对值从低于第一阈值的绝对值增加到等于或高于第一阈值的绝对值的值)的时刻开始时间延迟。这里使用的是绝对值,因为电压可以是负的或正的,取决于所用的是二极管阴极或阳极的电压,或所用的是哪个电触点。控制器310可被配置成:在第一电压比较器301确定电压的绝对值等于或超过第一阈值的绝对值之前,保持停用第二电压比较器302、计数器320和任何第一电压比较器301的操作不需要的其它电路。时间延迟可在电压变稳定(即,电压的变化率基本上为零)之前或之后结束。“电压的变化率基本为零”意味着电压的时间变化小于0.1%/ns。“电压的变化率基本上是非零”意味着该电压的时间变化是至少0.1%/ns。

控制器310可被配置成在时间延迟期间(包括开始和结束)来激活第二电压比较器。在实施例中,控制器310被配置成在时间延迟开始时激活第二电压比较器。术语"激活"意味着使所述部件进入操作状态(例如,通过发送诸如电压脉冲或逻辑电平信号,通过提供功率等)。术语"停用"意味着使所述部件进入非操作状态(例如,通过发送诸如电压脉冲或逻辑电平信号,通过切断电源等)。操作状态比非操作状态可具有较高的功耗(例如,10倍以上、100倍更高、1000倍以上)。控制器310本身可以被停用,直到当电压的绝对值等于或超过第一阈值的绝对值时,第一电压比较器301的输出激活控制器310。

控制器310可被配置成:如果在时间延迟期间第二电压比较器302确定电压的绝对值等于或超过第二阈值的绝对值,则使计数器320记录的数增加1。

控制器310可被配置成:在时间延迟期满时使电压表306测量电压。控制器310可被配置成将电极连接到电接地,以复位电压并释放累积在电极上的载流子。在实施例中,时间延迟结束后电极被连接到电接地。在实施例中,电极被连接到电接地有限复位时间。控制器310可通过控制开关305来将电极连接到电接地。开关可以是诸如场效应晶体管(fet)的晶体管。

控制器310可被配置成用以控制电流源模块388。例如,控制器310可以通过控制电流源模块388来改变暗噪音的补偿幅度;控制器310可以调整图10的流程中第一补偿信号2050的持续时间与第二补偿信号2060的持续时间的比率2040。控制器310可执行指令,从而实现图10和图11的流程。

在实施例中,系统121没有模拟滤波网络(例如,rc网络)。在实施例中,系统121没有模拟电路。

电压表306可将其测量的作为模拟或数字信号的电压回馈给控制器310。

图12示意性地示出了包括本文所述的辐射检测器100的系统。该系统可用于医学成像,例如胸部x射线照相、腹部x射线照相等。该系统包括发射x射线的脉冲辐射源1201。从脉冲辐射源1201发射的x射线穿过物体1202(例如,诸如胸部、肢体、腹部的人体部分),被物体1202的内部结构(例如,骨骼、肌肉、脂肪、器官等)不同程度地衰减,并且被投射到辐射检测器100。辐射检测器100通过检测x射线的强度分布而形成图像。

图13示意性地示出了包括本文所述的辐射检测器100的系统。该系统可用于诸如牙科x射线照相的医疗成像。该系统包括发射x射线的脉冲辐射源1301。从脉冲辐射源1301发射的x射线穿透物体1302,其是哺乳动物(例如,人)的嘴巴的部分。物体1302可以包括上颌骨、腭骨、牙齿、下颌或舌头。x射线被物体1302的不同结构不同程度地衰减,并被投射到辐射检测器100。辐射检测器100通过检测x射线的强度分布而形成图像。牙齿比龋牙、感染、牙周韧带更多地吸收x射线。牙科患者接收的x射线辐射的剂量典型地为小的(全口系列大约0.150msv)。

图14示意性地示出了包括本文所述的辐射检测器100的货物扫描或非侵入性检查(nii)系统。该系统可用于检查和识别运输系统中的货物,例如集装箱、车辆、船舶、行李等。该系统包括脉冲辐射源1401。从脉冲辐射源1401发射的辐射可从物体1402(例如,集装箱、车辆、船舶等)背散射并被投射到辐射检测器100。物体1402的不同内部结构可不同地背散射所述辐射。辐射检测器100通过检测背散射辐射的强度分布和/或背散射辐射的能量来形成图像。

图15示意性地示出了包括本文所述的辐射检测器100的另一货物扫描或非侵入性检查(nii)系统。该系统可用于公共运输站和机场的行李筛选。该系统包括发射x射线的脉冲辐射源1501。从脉冲辐射源1501发射的x射线可穿透行李1502,被行李的内容不同地衰减,并被投射辐射检测器100。辐射检测器100通过检测所述透射x射线的强度分布而形成图像。该系统可以揭示行李的内容,并识别在公共交通上禁止的物品,例如枪支、毒品、锋利武器、易燃物。

图16示意性地示出了包括本文所述的辐射检测器100的全身扫描系统。全身扫描系统可为了安全筛选目的检测人身体上的物体,不需物理地去除衣物或进行物理接触。全身扫描系统能够检测非金属物体。全身扫描系统包括脉冲辐射源1601。从脉冲辐射源1601发射的辐射可从被筛选的人1602及其上的物体背散射,并被投射到辐射检测器100。所述物体和所述人体可不同地背散射所述辐射。辐射检测器100通过检测背散射辐射的强度分布来形成图像。辐射检测器100和脉冲辐射源1601可被配置为沿直线或旋转方向扫描人。

图17示意性地示出了x射线计算机断层扫描(x射线ct)系统。x射线ct系统使用计算机处理的x射线来产生被扫描对象的特定区域的断层图像(虚拟的“切片”)。断层图像可用于各种医学学科中的诊断和治疗目的,或用于探伤、故障分析、计量、组装分析和反向工程。x射线ct系统包括本文描述的辐射检测器100和发射x射线的脉冲辐射源1701。辐射检测器100和脉冲辐射源1701可被配置成沿一个或多个圆形或螺旋路径同步旋转。

图18示意性地示出了电子显微镜。电子显微镜包括被配置为发射电子的电子源1801(也称为电子枪)。电子源1801可具有各种发射机制,例如热离子、光电阴极、冷发射或等离子体源。被发射的电子通过电子光学系统1803,其可被配置成用以影响、加速或聚焦电子。然后电子到达样品1802,并且图像检测器可从那里形成图像。电子显微镜可以包括本文所述的辐射检测器100,用于进行能量色散x射线分光镜检查(eds)。eds是用于样品的元素分析或化学表征的分析技术。当电子入射到样品上时,它们引起来自样品的特征x射线的发射。入射电子可以激发样品中的原子的内壳中的电子,从所述壳中将其排出,同时在所述电子原先的位置形成电子空穴。来自外部的高能壳层的电子填充所述空穴,较高能量壳层与较低能量壳层之间的能量差可以按x射线的形式释放。通过辐射检测器100可以测量从样品发射的x射线的数量和能量。

这里描述的脉冲辐射检测器100可具有其它应用,比如在x射线望远镜、x射线乳房摄影、工业x射线缺陷检测、x射线显微或微成像、x射线铸造检查、x射线无损检测、x射线焊接检查、x射线数字减影血管摄影等中。使用该脉冲辐射检测器100适合于代替摄影板、摄影胶片、psp板、x射线图像增强器、闪烁体或x射线检测器。

尽管本文公开了各种方面和实施例,其它方面和实施例对于本领域内技术人员将变得明显。本文公开的各种方面和实施例是为了说明目的而不意在为限制性的,其真正范围和精神由下列权利要求示明。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1