本发明涉及精确定位领域,特别是涉及一定区域内的差分全球定位系统,以及该差分全球定位系统的定位方法。
背景技术:
随着全球定位系统(gps、北斗等)的技术的日趋发展,为了寻求更为精确的定位,人们越来越多的开始应用差分全球定位系统(dgps)来实现对移动物体的精确定位。
差分全球定位系统(dgps)是将一台gps接收机安置在基准站上进行观测。根据基准站已知精密坐标,计算出基准站到卫星的偏差修正数,并由基准站实时将这一数据发送出去。用户接收机在进行gps观测的同时,也接收到基准站发出的改正数,并对其定位结果进行改正,从而提高定位精度。
目前在机器上应用差分全球定位系统(dgps)一般有两种方式。一种是自建基站,通过基站传输差分校正数据来校正测量误差实现高精度定位。但是这种方式,对于个体用户而言,一个机器就要建立一个基站,成本太高,且每个基站所需空间也较大。另一种方式,是通过使用连续运行卫星定位服务综合系统(continuouslyoperatingreferencestations,缩写为cors),使得机器通过与cors基站间的数据传输实现高精度定位。但是对于个体用户而言,使用cors基站的cors信号需额外付费,使用成本较高。
技术实现要素:
基于此,有必要针对上述使用差分全球定位成本较高的问题,提供一种差分全球定位系统以及一种差分全球定位系统的定位方法。
一种差分全球定位系统,包括基站和至少一个智能设备,所述基站配置为在固定地点设置时设定自身的第一定位数据,所述基站包括第一信号接收器,所述第一信号接收器接收卫星系统发出的卫星定位信号以得到所述基站的第二定位数据,所述基站根据所述第一定位数据与所述第二定位数据之间的测量误差得出差分校正数据,所述基站可与至少两个智能设备进行通讯连接,以将相应的差分校正数据传输给至少两个智能设备。
在其中一个实施例中,至少一个智能设备包括编码模块,所述编码模块用于对相应的智能设备进行编码,所述基站根据所述编码是否与所述基站预设的数据信息相匹配来判断是否将所述差分校正数据传输给相应的智能设备。
在其中一个实施例中,所述基站包括发送模块,用于将所述差分校正数据发送给智能设备;以及控制模块,用于存储智能设备的编码,并根据智能设备提供的编码控制所述发送模块是否将所述差分校正数据发送给所述智能设备。
在其中一个实施例中,所述差分全球定位系统包括至少两路传输路径,所述各路传输路径用于将相应的差分校正数据传输给相应的智能设备,当所述基站接收到相应的智能设备发出索取差分校正数据的请求指令时,所述基站可指示相应的智能设备通过相应的传输路径获取相应的差分校正数据。
在其中一个实施例中,各智能设备均包括壳体和连接于壳体的移动站,所述基站与智能设备通过所述移动站进行通讯连接。
在其中一个实施例中,各智能设备均包括分开设置的第二信号接收器和第三信号接收器,所述第二信号接收器接收卫星定位系统发出的卫星定位信号以得到相应的智能设备当前位置的定位数据,所述第三信号接收器用于接收所述基站发出的差分校正数据,所述第二信号接收器与所述第三信号接收器均集成于各智能设备的移动站上。
在其中一个实施例中,所述智能设备为自移动设备或智能机器人。
在其中一个实施例中,所述智能设备包括惯性导航系统。
在其中一个实施例中,所述智能设备与所述卫星定位系统之间的距离等于所述基站与所述卫星定位系统之间的距离。
在其中一个实施例中,所述基站与所述卫星定位系统之间的连线和所述智能设备与所述卫星定位系统之间的连线形成的夹角小于等于0.3度。
上述差分全球定位系统,能够实现对智能设备的精确定位,并且由于基站能够和多个智能设备建立通讯,从而使得该差分全球定位系统具有可拓展性,能够根据实际情况接入或加入多个智能设备,从而相当于能够组建一个区域差分全球定位网络,进而无需每个智能设备都必须建立一个基站,大大节省了成本,并且可以根据需要,添加或减少智能设备的数量,或者调整基站的覆盖范围,使得差分定位更为灵活方便。
一种差分全球定位系统,包括基站,所述基站配置为在固定地点设置时设定自身的第一定位数据,所述基站包括第一信号接收器,所述第一信号接收器接收卫星定位系统发出的卫星定位信号以得到所述基站的第二定位数据,所述基站根据所述第一定位数据与所述第二定位数据之间的测量误差得出差分校正数据,所述基站可与至少两个智能设备进行通讯连接,以将相应的差分校正数据传输给至少两个智能设备。
在其中一个实施例中,至少两个智能设备中的至少一个包括编码模块,所述编码模块用于对相应的智能设备进行编码,所述基站根据所述编码是否与所述基站预设的数据信息相匹配来判断是否将所述差分校正数据传输给相应的智能设备。
在其中一个实施例中,所述差分全球定位系统包括至少两路传输路径,所述各路传输路径用于将相应的差分校正数据传输给相应的智能设备,当所述基站接收到相应的智能设备发出索取差分校正数据的请求指令时,所述基站可指示至少两个智能设备通过不同的传输路径获取相应的差分校正数据。
在其中一个实施例中,各智能设备均包括壳体和连接于壳体的移动站,所述基站与智能设备通过所述移动站进行通讯连接。
在其中一个实施例中,所述智能设备为自移动设备或智能机器人。
一种差分全球定位系统的定位方法,所述差分全球定位系统包括基站,所述基站配置为在固定地点设置时设定自身的第一定位数据,所述基站可与至少一个智能设备进行通讯连接,所述基站还包括分析模块,各智能设备包括处理模块,所述定位方法至少包括如下步骤:
步骤1:采集数据:根据卫星定位系统发出的卫星定位信号得到所述基站的第二定位数据,将所述第一定位数据与所述第二定位数据传输给所述基站的分析模块;
步骤2:分析数据:所述基站的分析模块接收步骤1的第一定位数据与第二定位数据,分析得出所述基站的差分校正数据,并可将获得的差分校正数据传输给至少一个智能设备的处理模块。
在其中一个实施例中,所述定位方法还包括步骤3:处理数据:智能设备的处理模块接收所述差分校正数据,并根据该差分校正数据对相应的智能设备接收卫星定位信号,而得到的相应的智能设备当前位置的定位数据进行修正。
在其中一个实施例中,智能设备还包括指令模块,所述定位方法还包括步骤4:发出指令:将智能设备修正后的定位数据反馈给所述指令模块,所述指令模块控制智能设备的行进轨迹并发出执行指令。
在其中一个实施例中,所述智能设备还包括执行模块,所述定位方法进一步包括步骤5:执行指令:所述执行模块接收到所述指令模块发出的指令,触发智能设备根据得到的行进轨迹行进。
在其中一个实施例中,至少一个智能设备包括编码模块,所述编码模块用于对相应的智能设备进行编码,所述步骤2进一步包括:当所述基站的分析模块分析得出所述基站的差分校正数据时,所述基站可根据所述编码是否与所述基站预设的数据信息相匹配来判断是否将所述差分校正数据传输给相应的智能设备。
在其中一个实施例中,所述基站包括发送模块,用于将所述差分校正数据发送给智能设备;以及控制模块,用于存储智能设备的编码,并根据智能设备提供的编码控制所述发送模块是否将所述差分校正数据发送给所述智能设备。
在其中一个实施例中,所述差分全球定位系统包括用于将所述差分校正数据传输给相应的智能设备的至少两路传输路径,所述步骤2和所述步骤3之间还包括相应的智能设备向所述基站发出索取所述差分校正数据的指令,所述基站接收该指令并指示相应的智能设备通过相应的传输路径获取相应的差分校正数据。
在其中一个实施例中,所述传输路径的数量小于等于所述智能设备的数量。
在其中一个实施例中,智能设备均包括壳体和连接于壳体的移动站,所述基站与智能设备通过所述移动站进行通讯连接。
在其中一个实施例中,智能设备的处理模块、指令模块和执行模块均集成于各智能设备的移动站上。
在其中一个实施例中,所述第二定位数据随着所述卫星定位系统发送的卫星定位信号的时间的不同而产生变化。
在其中一个实施例中,智能设备通过接收卫星定位系统发送的卫星定位信号得到的定位数据随着卫星定位系统发送定位信号的时间的不同而产生变化。
由于在上述的差分全球定位系统的定位方法中,一个基站可以实现对多个智能设备的定位,从而大大降低了对智能设备进行定位的成本。
附图说明
图1为一实施例的差分全球定位系统的结构示意图;
图2为一实施例的配备有差分全球定位系统的智能设备结构示意图;
图3为图2所示实施例的差分全球定位系统的工作示意图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。
请参见图1,为本发明一实施例的差分全球定位系统的结构示意图。如图所示,该差分全球定位系统100包括基站110。当然在本实施例中,该差分全球定位系统还包括至少一个智能设备。该基站110可与至少一个智能设备进行通讯连接。具体的,该智能设备为自移动设备200。当然在其他实施方式中,该自移动设备还可以为智能机器人等。自移动设备200和基站110均可接收卫星定位系统发出的卫星定位信号,实现定位。在本实施方式中,卫星定位系统为gps卫星300,基站110和自移动设备200接收卫星定位系统发出的gps定位信号,实现gps定位。当然,卫星定位系统也可以为伽利略卫星导航系统、或北斗卫星导航系统、或glonass等。
基站110可向自移动设备200发送差分校正信息,实现差分卫星定位。具体的,基站110配置为在固定地点设置时,其具有固定的自身精确位置,将该位置定义为基站110的第一定位数据,在本实施方式中,第一定位数据用坐标值来表示,具体为(x1,y1)。基站110包括第一信号接收器(未图示),该第一信号接收器接收卫星定位系统发出的卫星定位信号以得到基站110的第二定位数据,在本实施方式中,第二定位数据用坐标值来表示,具体为(x2,y2)。其中该第一信号接收器为gps信号接收器。并可根据第一定位数据(x1,y1)与第二定位数据(x2,y2)之间的测量误差得出差分校正数据e。该基站110可与至少两个自移动设备200进行通讯连接,以将相应的差分校正数据e传输给至少两个自移动设备200。需要说明的是,通常情况下,基站110接收到的卫星定位系统发出的gps定位信号得到的第二定位数据是个变量,其可随着卫星定位系统发送gps定位信号时间的不同而产生变化,以实自移动设备在工作过程中,基站不断地将差分校正数据e发送给自移动设备200,从而自移动设备根据获得的差分校正数据,对其接收的卫星定位系统发出的gps定位信号得到的定位数据进行及时修正。
各自移动设备200均包括分开设置的第二信号接收器(未图示)和第三信号接收器(未图示),第二信号接收器用于接收卫星定位系统发出的gps定位信号以得到相应的自移动设备200的定位数据,第三信号接收器用于接收基站110发出的差分校正数据。自移动设备200还包括壳体(未标号)及连接于壳体的移动站120,基站110与自移动设备200通过该移动站120建立通讯连接。上述第二信号发射器与第三信号发射器均集成于各自移动设备200的移动站120上。在本实施方式中,移动站120与自移动设备200为可拆卸的连接。移动站120收容于壳体内,当移动站120安装于自移动设备200的壳体内时,可根据接收到的gps定位信号输出自移动设备200当前位置的定位数据。当然在其他实施方式中,移动站120也可位于自移动设备200的壳体外,可以由用户移动相应的移动站120,移动至特定位置以获得特定位置的位置数据。
这样的差分全球定位系统100,仅需建立一个基站110,并通过一个基站110和至少两个自移动设备200进行通讯,来实现对自移动设备200的精确定位。由于一个基站110能够和多个自移动设备200建立通讯,从而使得该差分全球定位系统100具有可拓展性,能够根据实际情况接入或加入多个自移动设备200,从而相当于能够组建一个区域差分全球定位网络,进而无需每个自移动设备200都必须建立一个基站120,大大节省了成本,并且可以根据需要,添加或减少自移动设备200的数量,或者调整基站120的覆盖范围,使得差分定位更为灵活方便。
在其中一个实施例中,基站110与自移动设备200之间的差分校正数据信息的传输不需要任何额外的操作程序实现,只要基站110存在,自移动设备200设置在基站110可覆盖的范围内,自移动设备200上的移动站120即可时时的或者在预设时间段内接收到差分校正数据并根据相应的差分校正数据对相应的自移动设备200接收到的gps定位信号得出的定位数据进行修正,以确保时时的或者在预设时间段内对相应的自移动设备当前的位置进行精确定位。下面针对此实施例进行举例示意说明,基站110得出的相应的差分校正数据可理解为通过电台发文或广播的形式进行时时的向外发射,在基站110覆盖范围内的,自移动设备200可进行时时的或在预设的时间段内无中间程序的接收基站110发出的差分校正数据,并根据接收到的差分校正数据对自移动设备200当前位置的定位数据进行修正。
在其中一个实施例中,至少两个移动设备200中的至少一个与基站110的通讯连接需要密钥程序。具体的,如图1所示,至少一个自移动设备200包括编码模块111,该编码模块111用于对相应的自移动设备200进行编码,基站110根据该编码是否与基站110预设的数据信息相匹配来判断是否将基站110的差分校正数据传输给该自移动设备200。进一步的,基站110包括发送模块113及控制模块114,该发送模块113用于将差分校正数据发送给自移动设备200,该控制模块114用于将存储自移动设备的编码,并根据自移动设备200提供的编码控制发送模块是否将差分校正数据传输给自移动设备200。在本实施例中,自移动设备200的编码模块设置在移动站120上。当然在其他实施方式中,编码模块也可以与移动站120彼此独立的设置在自移动设备200上。下面针对此实施例进行举例说明,比如当有两个自移动设备200,两个自移动设备200均设有一个移动站,具体的,一个自移动设备设有移动站120a,另一个自移动设备设有移动站120b。基站110可以根据移动站120的编码是否正确来决定是否与移动站120a和120b建立通讯,当基站110接收到移动站120a的编码是正确的,即将差分校正数据传输给移动站120a;反之,则移动站120a就不会获得相应的差分校正数据或者获得错误的乱码。同理,当基站110接收到移动站120b的编码是正确的,即将差分校正数据传输给移动站120b;反之,移动站120b就不会获得相应的差分校正数据或者获得错误的乱码。
在其中一个实施例中,对于同一个基站110覆盖范围内的移动站120,其编码都是唯一识别的,以确保通讯建立的安全性和可靠性。
在其中一个实施例中,该差分全球定位系统100包括至少两路传输路径,各传输路径用于将相应的差分校正数据传输给相应的自移动设备200。其中传输路径的数量小于等于自移动设备200的数量。当基站110接收到自移动设备200发出的索取差分校正数据请求指令时,基站110指令自移动设备200通过相应的传输路径获取相应的差分校正数据。进一步的,当至少两个自移动设备200均需要获取差分校正数据时,且至少两个自移动设备200获取的差分校正数据的格式相同时,基站110接收到自移动设备200发出的索取差分校正数据的请求指令,基站110可指令至少两个自移动设备200均可通过任意一路传输路径来获取相应差分校正数据;当至少两个自移动设备200均需要获取差分校正数据时,且有至少两个自移动设备获取差分校正数据的格式不相同时,该基站110可分别指示至少两个自移动设备通过不同的传输路径获取相应的差分校正数据。进一步的,基站110还包括辨别模块,当自移动设备200将索取差分校正数据的请求指令发送给基站110时,基站110可辨别该自移动设备是否满足接收差分校正数据的条件,具体的,该条件可以为该自移动设备200是否已经与基站110达成差分数据传输许可协议。若辨别模块判定自移动设备200与基站110达成差分数据传输许可,则基站110可顺利的将相应的差分校正数据发送给该自移动设备200;若辨别模块判定自移动设备200未与基站110达成差分数据传输许可,则基站110不能顺利的将相应的差分校正数据发送给该自移动设备200,即该路传输路径会被自动切断。下面针对此实施例进行举例示意说明,基站110得出的相应的差分校正数据可理解为通过电台发文或广播的形式向外发送,上述至少两路传输路径可以理解为不同的频段,当多个自移动设备200向基站110发出索取相应的差分校正数据的请求时,基站110接收请求并告知相应的自移动设备200其可以在哪一个频段的传输路径上去获取。
这样设计的差分全球定位系统100,基站可以对不同的自移动设备200定义不同的接收格式,可及时对未获得许可的自移动设备200的传输路径进行切断,且同时其它获得许可的自移动设备200的可以正常接收差分校正数据信息。因此,该实施例可以满足不同型号、不同规格的自移动设备都能顺利接收到正确的差分校正数据。另一方面,可实现基站110通过设立多个传输路径,保证基站110与自移动设备200数据传输的安全性,且即使某一路径的传输被切断也不会对其它传输路径造成干扰,实现基站110更安全的管理。
在其中一个实施例中,自移动设备200为智能割草机。每个智能割草机设有一个移动站120。每个智能割草机均具有独立的工作区域。比如在一个小区里建立一个基站110,每户人家均有一台自移动设备,优选地,这些自移动设备为智能机器人或智能动力设备,比如智能除草机、智能割草机等。这样这个小区里每户人家的自移动设备均可和该基站110建立通讯,从而实现差分全球定位。这样可以有效实现区域内的自移动设备的定位,并且极大的降低了成本。
在其中一个实施例中,如图2所示,基站110还可以包括接收天线112,用于接收gps定位信号;发送模块113,用于将差分校正数据发送给移动站120;以及控制模块114,该控制模块114用于计算差分校正数据,并储存多个移动站120的编码,然后根据编码控制发送模块113将差分校正数据发送给不同的移动站120。优选地,该基站的覆盖范围在半径50公里内,以确保对每个智能设备的精确定位。
在其中一个实施例中,在基站110的覆盖范围内设置的智能设备120的数量不多于1000台,以避免在基站110的覆盖范围内有过多的智能设备,造成通讯阻塞,从而可以保证基站110的工作稳定性,以及确保每个自移动设备100的定位准确性。
请参见图2,为本发明一实施例的配备有差分全球定位系统的自移动设备的结构示意图。自移动设备200上设置有移动站120,自移动设备200还包括接收天线210,该接收天线210用于接收gps定位信号,该gps定位信号为全球卫星定位信号,比如gps、北斗或伽利略等,主要用于获取全球定位信息。此外,移动站120还包括通讯模块122和处理模块121,通讯模块122用于和基站110建立通讯,接收差分校正数据。处理模块121连接接收天线210和通讯模块122,用于处理接收到的gps定位信号和差分校正数据实现高精度定位。由于在这样的差分全球定位系统中,一个基站110可以实现对多个自移动设备的定位,从而大大减小了对自移动设备进行定位的成本。
在其中一个实施例中,自移动设备200还可以包括惯性导航系统,用于在有遮挡、卫星信号不佳时输出准确定位数据实现导航。该惯性导航系统通过测量自移动设备200在惯性参考系的加速度和角速度,将它对时间进行积分,且把它变换到导航坐标系中,从而得到在导航坐标系中的速度、偏航角和位置等信息。从而在山区,或者林区等非空旷地区,通讯信号较弱,条件较差的情况下,可以通过惯性导航系统对自移动设备200进行精确定位,从而使得该差分全球定位系统的适用范围更广,精确度更好。
可以理解的是,进一步地,该自移动设备200可以是智能割草机、智能打草机、智能除草机等。但不限于上述列举的机器。
请参见图3,为差分全球定位系统的工作示意图。如图所示,基站110和自移动设备200分别接收gps卫星300的gps定位信号,确定其gps定位位置。基站110根据其自身精确位置和gps定位位置之间的测量误差计算出差分校正数据e,并将该差分校正数据e传输给自移动设备200。自移动设备200根据其接收到的gps卫星信号以及接收到的差分校正数据e计算出其精确的定位位置。由于通常情况下基站110和自移动设备200和gps卫星之间的夹角α不超过0.3度,因此自移动设备200根据由基站110发送的差分校正数据e进行处理,其误差很小,是在可接受范围内的。进一步的,基站与gps卫星之间的距离等于自移动设备与gps卫星之间的距离,此时自移动设备修正后的定位数据是最精确的。
进一步地,该基站110可以同时和多个自移动设备200进行通讯,这样,当有多个自移动设备200在同时工作时,可以实现同时对多个自移动设备200的精确定位,从而极大减少了精确定位成本。
进一步的,下面进行介绍本发明差分全球定位系统的定位方法,该差分全球定位系统包括基站110,该基站配置为在固定地点设置时设定自身的第一定位数据及分析模块,该基站110可与至少一个智能设备进行通讯连接,各自移动设备包括处理模块,该差分全球定位系统的定位方法至少包括如下步骤:
步骤1:采集数据:根据卫星定位系统发出的gps定位信号得到基站的第二定位数据,将第一定位数据与第二定位数据传输给基站的分析模块;
步骤2:分析数据:基站的分析模块接收步骤1的第一定位数据与第二定位数据,分析得出基站的差分校正数据,并将获得的差分校正数据传输给智能设备的处理模块。
进一步的,该定位方法包括步骤3:处理数据:智能设备的处理模块接收差分校正数据,并根据该差分校正数据对相应的智能设备接收的卫星定位系统发出的定位信号得到相应的智能设备当前位置的定位数据进行修正。
进一步的,至少一个智能设备包括编码模块,编码模块用于对相应的智能设备进行编码,步骤2进一步包括:当基站的分析模块分析得出所述基站的差分校正数据时,基站根据编码是否与基站预设的数据信息相匹配来判断是否将差分校正数据传输给相应的智能设备。
进一步的,基站包括发送模块,用于将差分校正数据发送给智能设备;以及控制模块,用于存储智能设备的编码,并根据智能设备提供的编码控制所述发送模块是否将差分校正数据发送给智能设备。
进一步的,智能设备包括控制模块,上述定位方法还包括步骤4:发出指令:将智能设备修正后的定位数据反馈给指令模块,指令模块控制智能设备的行进轨迹并发出执行指令。
进一步的,智能设备包括执行模块,上述定位方法还包括步骤5:执行指令:执行模块接收到指令模块发出的指令,触发智能设备根据得到的行进轨迹行进。
进一步的,该差分全球定位系统包括用于将差分校正数据传输给相应的智能设备的至少两路传输路径,上述步骤2和上述步骤3之间还包括相应的智能设备向基站发出索取相应的差分校正数据的指令,基站接收到指令并根据不同的自移动设备指示相应的智能设备通过相应的传输路径获取正确的差分校正数据。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。