本发明涉及一种具有改进的光学旋转位置检测性能的旋转调节器。
背景技术:
以非接触形式进行光学位置检测的输入设备、尤其是旋转调节器,已经广为人知。比如在通常的光学检测旋转调节器中,设计有一个或者多个叉形结构的挡光板(lightbarrier),其光路以根据位置方式通过一个与旋钮同步旋转的遮板中断,以便检测旋钮的位置和/或旋转方向。
文件de102004020827a1公布了一种旋转调节器,它具有一个发射器和一个沿周向分布的接收器阵列,这些接收器相互对齐。接收器和发射器之间没有设计光导体。
文件de102008017069a1公布了一种具有一个发射器阵列和一个接收器的旋转调节器,其中发射器发出的光借助一个静止的光导体、通过与旋钮同步运动的编码环被引导至一个接收器,以便能借助光照强度和编码对位置进行检测。所展示的结构体积较大。
一般来说,人们需要十分准确的位置检测,同时又不能放弃利用光学检测的无磨损性。
技术实现要素:
在这种背景下存在以下需求:提供一种旋转调节器作为输入设备的解决方案,这种旋转调节器具有分辨率更高的、以非接触形式工作的位置检测装置,占用空间小,生产成本低,并且能在更大程度上长久确保功能可靠性。这一任务通过根据权利要求1所述的旋转调节器完成。同样有利的应用是独立使用的权利要求的主题。各种有利的实施例是不同情况下从属权利要求涉及的主题。需要指出的是,各项权利要求中单独列出的特征,可以通过任意的、在技术上合理的方式相互组合,从而产生本发明的其它实施例。此外说明部分特别是结合附图指出了本发明的特点并对本发明做了详细说明。
本发明涉及一种旋转调节器,其具有一个壳体和一个旋钮,旋钮安装在壳体上并可围绕旋转轴旋转。对于概念“旋钮”,不应做狭义理解,根据本发明此概念应该是以任意方式配置的至少可以实现旋转输入的操作件。
根据本发明还提供了一个用于检测旋钮旋转位置的光学检测装置和一个与旋钮同步运动的编码遮板。根据本发明,检测装置至少具有一个,优选刚好只有一个光学发射器,比如采用smd结构的发光二极管和一个光学接收器阵列。光学接收器最好组合为一个总成。例如接收器阵列可以是一个单行阵列,比如采用ccd结构形式的单行图像传感器。本发明设计了编码遮板和检测装置,借助阵列中被发射器照射的接收器数量和/或阵列中一个或多个接收器的光照强度,检测旋钮的旋转位置。例如,可以配合使用两种检测方法,以便实现尽可能准确的位置检测,使检测分辨率超出单纯通过接收器数量确定的分辨率。此外根据本发明所述特征的旋转调节器还具有一个光导体,光导体布置在发射器和阵列接收器之间的光路中并与旋钮同步运动,通过这种设计可以放弃接收器和多个接收器之间的“视野接触”,从而提高检测装置的抗干扰能力。
可以通过设计,使光导体能够实现光偏转。比如接收器和发射器按照这种方式布置:对于所有接收器来说,发射器和阵列中的一个接收器之间的最短光路总共经历180°偏转,比如各发生两次90°的偏转。
根据本发明,光导体至少在其位于发射器和阵列之间的区段上被设计为旋转对称体,并可围绕其旋转对称轴进行旋转运动。光导体最好全部设计为旋转对称体。通过至少在上述区段中设计的旋转对称结构,可以实现基本与位置无关的、一致的(conformal)光通路,使得除了位置检测之外根据所测量光照强度确定位置所需要的校准过程,可以全部取消或者缩减到最低限度。这应参考上述区段的外周。根据本发明,可以存在与严格的旋转对称不相符合的偏差,比如采用卡接件作为固定件,比如卡接凸耳,连接以上所述的、位于相关区段内的编码遮板。光导体在上述区段内可以具有圆柱形外周。发射器发出的光,通过第一圆柱形外侧面输入光导体中,并通过在轴向上与上述第一外侧面错开的第二圆柱形位置、沿着接收器方向从第二外侧面输出。例如,此外第一圆柱形外侧面还可以在径向上与第二圆柱形外侧面错开。
根据本发明的一个优选实施例,旋钮和光导体以同轴形式布置以便节省结构空间。
根据本发明的一个优选实施例,光导体构成操作件旋转轴的一个轴段。定义光导体的轴段最好支撑在壳体上,以避免光导体出现影响光传输的摆动运动。
光导体的末区段最好与壳体构成一个尖端轴承。通过这一设计可以实现光导体的自定心(self-centering)轴承,从而使发射器到接收器的光传输无论位置如何,即在旋转调节器的各个不同位置上,都能确保均匀性。优选地,壳体可以具有一个锥形凸起,其嵌入光导体的锥形槽中。
优选地,旋转轴的另一个轴段,尤其是与旋钮建立连接的旋转轴轴段,最好通过插接方式与光导体相连接。比如它们通过形状配合方式相互连接。
阵列最好通过在旋转轴方向上延伸的单行结构定义。接收器最好在延伸方向上与阵列错开,这种设计可以将发射器和阵列接收器安装在共同的电路板上,从而节省结构空间。
光导体和阵列最好按照以下方式布置:无论编码遮板处于哪个位置,都有一部分接收器能接收到发射器的光,因为比如光导体和阵列突出于编码遮板之外。通过这种做法可以实现发射器的功能监控、或者对发射器的发射功率进行校准,以便例如应对老化现象,如随着工作时间的增加发射器的发射功率降低、或者接收器灵敏度下降。
在本发明的一个优选实施方案中,设计有一个卡接装置,其作用是将旋转调节器固定在规定的卡接位置,比如可以设计一个卡槽和一个通过弹性预紧力与卡槽相结合的卡接元件,比如卡接弹簧。卡槽最好设计在编码遮板上,壳体侧卡接元件卡入这个卡槽中,以便在相应卡接位置和编码遮板位置之间实现无偏差对应。
为了节省结构空间,编码遮板被设计为一个围绕光导体的环,最好在这个环的端面上设计编码轮廓,比如锯齿形轮廓。环形编码遮板最好支撑在围绕光导体延伸的颈圈状(collar-like)凸起上。该凸起(比如)定义上述第一圆柱形外侧面。
此外本发明还涉及采取以上所述实施方案的旋转调节器在汽车中的应用。
附图说明
下面借助附图进一步阐述本发明。附图应被理解为仅作为示例,只是用于描述优选实施例。其中:
图1示出了本发明所述旋转调节器的一个实施例的垂直截面图;
图2示出了图1中根据本发明所述的旋转调节器的爆炸图;
图3示出了图1中根据本发明所述的旋转调节器的详细视图。
具体实施方式
图1显示了本发明所述旋转调节器1的一个实施例。这个旋转调节器具有一个两体式壳体,由壳体件3a和3b构成。两个壳体件3a和3b通过卡接件相互固定。旋转调节器1具有一个旋钮2,该旋钮2通过不透明塑料组成的第一轴段14和透明塑料组成的第二轴段,安装在壳体3a、3b上并可以围绕轴a旋转,其中第二轴段构成光导体10。第一轴段14通过颈圈状凸起18支撑在壳体上。第一轴段14和作为第二轴段的光导体10,通过一个形状配合式插接装置相互连接,并定义了旋钮2的旋转轴a。光导体10为旋转对称结构(其中旋转轴a作为旋转对称轴),并在其远离旋钮2的末端具有一个锥形槽11,壳体侧芯轴12嵌入这个槽中,以便产生旋钮2和光导体10的自定心尖端轴承。一个编码环9通过卡接元件与光导体10相连接,不能转动。编码环9在其外周上具有一个卡槽8,设计为卡接元件7的卡接弹簧卡入这个卡槽中并施加弹性预紧力,以便通过卡接方式将旋钮2固定在规定的位置,并在对旋钮2执行旋转操作时产生卡接感。根据图2所示分解图可以看出原理结构。旋转位置检测根据图3进行了描述。电路板7上布置的光学发射器4发出的光,通过基本为圆柱形的光导体10的外周,更准确地说,是通过光导体10的第一圆柱形外侧面13,输入光导体10,以便在光导体10中传播,并在沿轴向a错开的位置,通过光导体10的第二圆柱形外侧面传播,然后由光学接收器阵列5接收,在这里该阵列是一个平行于旋转轴延伸的、组合为一个总成的单行阵列5。发射器4和接收器5静止,而当执行旋转操作时光导体10在由发射器4和接收器5组成的检测装置上面旋转。第一外侧面13相对于第二外侧面19向外错开,并构成环形编码遮板9的连接法兰。
因为通过自定心轴承安装并且具有旋转对称性,通过光导体10的光基本与旋钮2的位置无关,而为了实现位置检测,从光导体10发出的光通过编码环9中构成的锯齿状编码轮廓16,根据位置被中断或者允许通过,从而可以根据被照射的阵列5接收器数量以及根据所达到的光照强度实现位置检测。
从图3中可以看出,锯齿形编码轮廓16具有90°的周期。发射器4和接收器阵列5安装在一个共同的电路板6上,并沿着平行于旋转轴a的方向布置。此外从图3还可以看出,光导体10和阵列5突出于环形编码遮板9之外。尽管因为光导体10高度对称并且通过轴承(自定心)实现了精确定位、从而原则上没有校准必要,但从光导体10突出部分17至阵列5突出部分的、不能中断从而被传输的光,除了纯粹的功能监控功能外,也可以用于实施校准,以便(比如)补偿发射器4和接收器5的老化现象。