一种激光诱导击穿光谱检测系统的制作方法

文档序号:14773183发布日期:2018-06-23 02:10阅读:128来源:国知局
一种激光诱导击穿光谱检测系统的制作方法

本发明涉及激光诱导击穿光谱技术领域,尤其涉及一种激光诱导击穿光谱检测系统。



背景技术:

激光诱导击穿光谱技术(Laser Induced Breakdown Spectroscopy,LIBS)是基于激光和材料相互作用产生的发射光谱的一种元素成分分析技术。激光诱导击穿光谱技术通常由激光诱导光源产生激光,在待测样品上烧蚀产生等离子体,通过光谱仪(或分光光度计等)进行等离子的光信号采集,然后选择待分析元素特定波长的光谱信号进行处理,得到样品成分的定性定量信息。该技术在测量过程中,对样品的破坏性小,样品消耗量极低,属于非破坏测量,并且无需对样品进行预处理即可实现对任何物理状态物质的元素分析,具有适用范围广、分析速度快、测量破坏性小、可远程非接触测量以及可实现实时检测等优点。

目前,基于激光诱导击穿光谱技术的研究,主要集中于对不同应用领域的检测、不同的检测方法及对光谱数据的处理方法上。

针对不同领域的应用,研究人员先后提出了基于激光诱导击穿光谱的水稻品种鉴别、钢水成分的在线检测、水体金属污染物的探测、痕量元素分析和煤质分析等技术方案。而针对不同的激光诱导技术、光谱探测方法,有部分激光诱导检测技术实现了信号的增强和改进。例如一种基于二维能量相关的激光诱导击穿光谱的分析系统及方法,能够更为清晰地解析光谱特征,提高常规激光诱导击穿光谱方法的检测能力和重复性。又例如采用特殊的测量容器,让待测液体匀速通过该测量容器,然后将高能量脉冲激光聚焦到容器中流动的待测样品表面,诱导等离子体光谱,同时容器内液体表面采用鼓风机加大空气流通,以便清除测量中产生的悬浮物或者尘埃,提高测量精度。此外在不同的激光诱导光学结构及数据处理算法研究领域,人们先后提出采用双向分光的二向色光学器件实现对特定波长光透射和反射、选用有孔镜片来实现同轴收发。

上述各个方向的研究均对激光诱导击穿光谱技术的发展产生了巨大的推动作用。然而,在现有的激光诱导击穿光谱检测系统中,存在着由于关键部件输出的不确定性,导致测量结果不确定的问题。例如激光诱导光源输出的能量通常具有3~10%的峰峰值抖动,这种不稳定性会导致等离子体的波动。上述不确定因素严重制约了激光诱导击穿光谱检测的精度。



技术实现要素:

本发明为解决现有技术中存在的部件输出的不确定性导致的测量结果不确定的问题,提供了一种激光诱导击穿光谱检测系统。

一方面,本发明提出一种激光诱导击穿光谱检测系统,包括激光诱导光源、激光参数监测单元、分光单元、数据筛选单元和分析单元;其中,所述数据筛选单元分别与所述分光单元、激光参数监测单元和分析单元连接;所述激光诱导光源用于向待检测材料输出激光以激发所述待检测材料产生等离子体光;所述激光参数监测单元用于监测所述激光诱导光源输出激光的激光参数;所述分光单元用于对所述等离子体光进行分光,并输出光谱数据;所述数据筛选单元根据所述激光参数对所述光谱数据进行筛选和/或修正,并输出有效光谱数据;所述分析单元根据所述有效光谱数据获取所述待检测材料的成分。

优选地,所述激光参数监测单元包括能量参数监测装置、时域参数监测装置、空间参数监测装置和偏振参数监测装置中的至少一种;对应地,所述激光参数包括能量参数、时域参数、空间参数和偏振参数中的至少一种。

优选地,所述数据筛选单元基于筛选规则,根据所述激光参数对所述光谱数据进行筛选,所述筛选规则通过预先设定或人工智能算法获取。

优选地,当所述激光参数中能量参数为多个脉冲输出能量,所述筛选规则为预设数量的脉冲能量均值波动范围时,所述数据筛选单元根据所述一个或多个脉冲输出能量计算预设数量个所述脉冲输出能量均值的实际波动值;若所述实际波动值在所述波动范围内,则所述光谱数据为有效光谱数据;否则,剔除所述光谱数据。

优选地,当所述激光参数中空间参数为光斑分布参数,所述筛选规则为激光束光斑焦点远场能量分布或质心漂移范围时,所述数据筛选单元根据所述光斑分布参数计算光斑焦点远场能量分布或质心漂移的实际数值;当所述筛选规则为激光束光斑近场能量分布或光束质量因子M2漂移范围时,所述数据筛选单元根据所述光斑分布参数计算光斑近场能量分布或光束质量因子M2的实际数值;若所述实际数值在所述范围内,则所述光谱数据为有效光谱数据;否则,剔除所述光谱数据。

优选地,当所述激光参数中偏振参数为激光偏振度,所述筛选规则为偏振范围时,若所述激光偏振度在所述偏振范围内,则所述数据筛选单元确认所述光谱数据为有效光谱数据;否则,剔除所述光谱数据。

优选地,当所述激光参数中时域参数为激光脉冲宽度,所述筛选规则为脉冲宽度范围时,若所述激光脉冲宽度在所述脉冲宽度范围内,则所述数据筛选单元确认所述光谱数据为有效光谱数据;否则,剔除所述光谱数据。

优选地,当存在多个所述激光参数时,每一所述激光参数对应的评价标准通过与或逻辑关系组合构成所述筛选规则。

优选地,当所述激光参数中能量参数为多个脉冲的预设波长能量时,所述数据筛选单元根据所述多个脉冲的预设波长能量获取参考能量,根据所述参考能能量等比例修正所述光谱数据,修正后的所述光谱数据为有效光谱数据。

优选地,还包括采集单元,所述采集单元和分光单元连接;所述采集单元用于采集所述等离子体光。

本发明提供的一种激光诱导击穿光谱检测系统,根据激光诱导光源输出激光的激光参数对光谱数据进行筛选,降低了激光诱导光源输出端的干扰因素,有效提高了光谱数据的稳定性,实现了高精度的成分分析。

附图说明

图1为本发明具体实施例的一种激光诱导击穿光谱检测系统的结构示意图;

图2为激光参数监测单元的结构示意图。

具体实施方式

下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。

图1为本发明具体实施例的一种激光诱导击穿光谱检测系统的结构示意图,如图1所示,一种激光诱导击穿光谱检测系统,包括激光诱导光源101、分光单元103、激光参数监测单元102、数据筛选单元104和分析单元105;其中,所述数据筛选单元104分别与所述分光单元103、激光参数监测单元102和分析单元105连接;所述激光诱导光源101用于向待检测材料106输出激光以激发所述待检测材料106产生等离子体光;所述激光参数监测单元102用于监测所述激光诱导光源101输出激光的激光参数;所述分光单元103用于对所述等离子体光进行分光,并输出光谱数据;所述数据筛选单元104根据所述激光参数对所述光谱数据进行筛选和/或修正,并输出有效光谱数据;所述分析单元105根据所述有效光谱数据获取所述待检测材料106的成分。

具体地,本发明具体实施例在传统激光诱导击穿光谱检测系统所包括的激光诱导光源101、分光单元103和分析单元105的同时、还包括激光参数监测单元102和数据筛选单元104,其中,所述数据筛选单元104分别与所述分光单元103、激光参数监测单元102和分析单元105连接。

传统激光诱导击穿光谱检测系统,所述激光诱导光源101向待检测材料106输出激光,用于激发所述待检测材料106产生等离子光;所述分光单元103将所述待检测材料106在所述激光诱导光源101激励下产生的等离子光按照波长进行分光处理,并输出分光后的光谱数据。

基于上述传统激光诱导击穿光谱检测系统,本发明具体实施例中加入的激光参数监测单元102对所述激光诱导光源101输出激光的激光参数进行采集监测,并将其采集的激光参数发送给数据筛选单元104。

所述数据筛选单元104接收所述激光参数监测单元102发送的所述激光参数,还接收所述分光单元103输出的所述光谱数据。所述数据筛选单元104根据所述激光参数对所述光谱数据进行筛选和/或修正,并将筛选和/或修正后的光谱数据作为有效光谱数据输出。

所述分析单元105接收所述数据筛选单元104进行筛选和/或修正后获取的有效光谱数据,并对所述有效光谱数据进行处理,获取定性定量的所述待检测材料106的成分分析结果。

本发明具体实施例根据激光诱导光源101输出激光的激光参数对光谱数据进行筛选,降低了激光诱导光源101输出端的干扰因素,有效提高了光谱数据的稳定性,实现了高精度的成分分析。

基于上述具体实施例,一种激光诱导击穿光谱检测系统,所述激光诱导光源用于向待检测材料输出激光,激发所述待检测材料产生等离子光。所述激光诱导光源的种类、输出方式、调制手段和输出波长均不受限制。

进一步地,所述激光诱导光管包括但不限于半导体激光器、固体激光器、气体激光器中的至少一种,例如Nd:YAG激光器、通过光纤耦合输出的半导体激光器以及二氧化碳激光器。

所述激光诱导光源包括但不限于脉冲输出激光器和/或连续输出激光器。

所述激光诱导光源还能够通过电源或者光学调制的方法,实现间隔时间可调节的多个脉冲输出。

所述激光诱导光源还包括由统一时序的输出设备控制的多个激光器的组合结构,以及根据等离子的激发需要能够输出多波长激光的激光器或激光器组合结构。

基于上述任一具体实施例,一种激光诱导击穿光谱检测系统,所述待检测材料的种类、物态和测试环境均不受限制。具体地,所述待检测材料可以是固体、液体、气体试样,可以是任何能够通过激光激发产生等离子体,并实施光谱分析的材料。且所述待检测材料可以是处于远距离、真空、水下、高气压等条件下的进行检测的材料。

基于上述任一具体实施例,一种激光诱导击穿光谱检测系统,所述分光单元将所述等离子光按照波长进行分光处理,并输出分光后的光谱数据。所述分光单元包括若干个光谱信号探测设备,所述光谱信号探测设备包括但不限于光谱仪、分光光度计、CCD/CMOS感光器件与分光器件结构的分光模块,例如线阵光谱仪、中阶梯光栅光谱仪、CCD或CMOS感光器件与线光栅、闪耀光栅或二次分光光栅结合的分光模块。所述分光单元能够输出一维或二维分光后的光谱数据。

基于上述任一具体实施例,一种激光诱导击穿光谱检测系统,所述激光参数监测单元包括能量参数监测装置、时域参数监测装置、空间参数监测装置和偏振参数监测装置中的至少一种;对应地,所述激光参数包括能量参数、时域参数、空间参数和偏振参数中的至少一种。

具体地,所述激光参数监测单元对所述激光诱导光源输出激光的激光参数进行采集监测,具体包括能量参数监测装置、时域参数监测装置、空间参数监测装置和偏振参数监测装置中的至少一种。

其中,所述能量参数监测装置用于监测的能量参数包括但不限于单脉冲能量和多次测量获取的能量稳定性;

所述时域参数监测装置用于监测的时域参数包括但不限于脉冲延迟、延时稳定性、脉冲宽度和脉冲稳定性;

所述空间参数监测装置用于监测的空间参数包括但不限于光斑尺寸、发散角、指向性和光束质量因子;

所述偏振参数监测装置用于监测的偏振参数包括但不限于偏振方向、偏振度。

本发明具体实施例中提出了所述激光参数监测单元的监测范围和参数,通过参数的合理选择和组合为光谱数据的筛选和干扰因素的剔除提供了依据。

基于上述任一具体实施例,一种激光诱导击穿光谱检测系统,所述能量参数采集装置包括能量计、四象限光电探测器和光电二极管中的至少一种;所述时域参数采集装置为光电二极管;所述空间参数采集装置包括CCD成像元件、CMOS成像元件和四象限探测器中的至少一种;所述偏振参数采集装置包括偏振度测试仪和/或分光器件与双能量计组合装置。

基于上述任一具体实施例,一种激光诱导击穿光谱检测系统,所述数据筛选单元基于筛选规则,根据所述激光参数对所述光谱数据进行筛选,所述筛选规则通过预先设定或人工智能算法获取。

具体地,所述数据筛选单元接收所述激光参数监测单元发送的所述激光参数,还接收所述分光单元输出的所述光谱数据。所述数据筛选单元判断所述激光参数是否符合筛选规则,并根据判断结果对所述光谱数据进行筛选:若所述激光参数符合所述筛选规则,则对应的光谱数据为有效光谱数据;若所述激光参数不符合所述筛选规则,则剔除所述光谱数据。

其中,所述筛选规则为通过人工预先设定获取的规则,或通过人工智能算法获取的规则。所述人工智能算法包括但不限于神经网络算法、自适应信号滤波算法和动态规划算法。

基于上述任一具体实施例,一种激光诱导击穿光谱检测系统,当所述激光参数中能量参数为多个脉冲输出能量,所述筛选规则为预设数量的脉冲能量均值波动范围时,所述数据筛选单元根据所述一个或多个脉冲输出能量计算预设数量个所述脉冲输出能量均值的实际波动值;若所述实际波动值在所述波动范围内,则所述光谱数据为有效光谱数据;否则,剔除所述光谱数据。

具体地,当所述激光参数监测单元对所述激光诱导光源输出激光的能量参数进行采集监测,并获取多个脉冲输出能量,且对应的所述筛选规则为预设数量的脉冲能量均值波动范围时,则根据所述一个或多个脉冲输出能量计算所述预设数量个脉冲输出能量均值的实际波动值,并以此为依据判断所述能量参数对应的光谱数据是否为有效光谱数据。

例如,筛选规则为20个脉冲的均值波动±0.1~10%范围为有效光谱数据的判据。依照上述筛选规则选取激光参数监测单元监测的能量参数中前20个脉冲输出能量,计算其均值的实际波动值。

若所述实际波动值为3%,在所述筛选规则设置的波动范围内,则确定所述能量参数对应的光谱数据为有效光谱数据;

若所述实际波动值为12%,超出所述筛选规则设置的波动范围,则剔除所述能量参数对应的光谱数据。

本发明具体实施例公开了基于能量参数的光谱数据筛选方法,有效剔除了由于激光诱导光源输出能量的抖动导致的不稳定性,有效提高了成分分析的精度。

基于上述任一具体实施例,一种激光诱导击穿光谱检测系统,当所述激光参数中空间参数为光斑分布参数,所述筛选规则为激光束光斑焦点远场能量分布或质心漂移范围时,所述数据筛选单元根据所述光斑分布参数计算光斑焦点远场能量分布或质心漂移的实际数值;当所述激光参数中空间参数为光斑分布参数,所述筛选规则为激光束光斑近场能量分布或光束质量因子M2漂移范围时,所述数据筛选单元根据所述光斑分布参数计算光斑近场能量分布或光束质量因子M2的实际数值;若所述实际数值在所述范围内,则所述光谱数据为有效光谱数据;否则,剔除所述光谱数据。

具体地,当所述激光参数监测单元对所述激光诱导光源输出激光的空间参数进行采集监测,并获取激光诱导脉冲的光斑分布参数,且对应的所述筛选规则为激光束光斑焦点远场能量分布或质心漂移范围时,则根据所述光斑分布参数计算所述光斑焦点远场能量分布或质心漂移的实际数值,并以此为依据判断所述空间参数对应的光谱数据是否为有效光谱数据。

当所述激光参数监测单元对所述激光诱导光源输出激光的空间参数进行采集监测,并获取激光诱导脉冲的光斑分布参数,且对应的所述筛选规则为激光束光斑近场能量分布或光束质量因子M2漂移范围时,则根据所述光斑分布参数计算光斑近场能量分布或光束质量因子M2的实际数值,并以此为依据判断所述空间参数对应的光谱数据是否为有效光谱数据。

本发明具体实施例公开了基于分布参数的光谱数据筛选方法,有效剔除了由于激光诱导光源输出激光自身波前相位和强度分布畸变导致的不稳定性,有效提高了成分分析的精度。

基于上述任一具体实施例,一种激光诱导击穿光谱检测系统,当所述激光参数中偏振参数为激光偏振度,所述筛选规则为偏振范围时,若所述激光偏振度在所述偏振范围内,则所述数据筛选单元确认所述光谱数据为有效光谱数据;否则,剔除所述光谱数据。

具体地,当所述激光参数监测单元对所述激光诱导光源输出激光的偏振参数进行采集监测,并获取激光诱导脉冲的激光偏振度,且对应的所述筛选规则为偏振范围时,则以所述激光偏振度为依据判断所述偏振参数对应的光谱数据是否为有效光谱数据。

本发明具体实施例公开了基于偏振参数的光谱数据筛选方法,有效剔除了由于激光诱导光源由于偏振导致的不稳定性,有效提高了成分分析的精度。

基于上述具体实施例,一种激光诱导击穿光谱检测系统,当所述激光参数中时域参数为激光脉冲宽度,所述筛选规则为脉冲宽度范围时,若所述激光脉冲宽度在所述脉冲宽度范围内,则所述数据筛选单元确认所述光谱数据为有效光谱数据;否则,剔除所述光谱数据。

具体地,当所述激光参数监测单元对所述激光诱导光源输出激光的时域参数进行采集监测,并获取多个激光脉冲宽度,且对应的所述筛选规则为脉冲宽度范围时,则根据所述多个激光脉冲宽度计算脉冲平均宽度,若所述脉冲平均宽度在所述脉冲宽度范围内,则确认所述时域参数对应的光谱数据为有效光谱数据;否则,剔除所述光谱数据。

例如,筛选规则为20个脉冲的平均宽度设定值为100ns,允许的偏离范围为±5%。依照上述筛选规则选取激光参数监测单元监测的时域参数中前20个脉冲输出能量,计算其脉冲宽度的实际均值。

若所述实际均值为102ns,在所述筛选规则允许的偏离范围内,则确定所述时域参数对应的光谱数据为有效光谱数据;

若所述实际均值为112ns,超出所述筛选规则允许的偏离范围,则剔除所述时域参数对应的光谱数据。

本发明具体实施例公开了基于时域参数的光谱数据筛选方法,有效剔除了由于激光诱导光源由于偏振导致的不稳定性,有效提高了成分分析的精度。

基于上述任一具体实施例,一种激光诱导击穿光谱检测系统,当存在多个所述激光参数时,每一所述激光参数对应的评价标准通过与或逻辑关系组合构成所述筛选规则。

具体地,当存在多个所述激光参数时,建立对应每一所述激光参数的评价标准,并通过“与”和“或”等逻辑关系对上述多个评价标准进行组合,构成筛选规则,并应用所述筛选规则对光谱数据进行筛选。

本发明具体实施例提出了筛选规则的设置方法,为对光谱数据进行筛选和激光诱导光源输出端的干扰因素影响的降低提供了规则,有助于提高了光谱数据的稳定性。

基于上述任一具体实施例,一种激光诱导击穿光谱检测系统,当所述激光参数中能量参数为多个脉冲的预设波长能量时,所述数据筛选单元根据所述多个脉冲的预设波长能量获取参考能量,根据所述参考能能量等比例修正所述光谱数据,修正后的所述光谱数据为有效光谱数据。

具体地,应用激光参数监测单元监测激光脉冲中某一特定波长信号的能量,并进行统计分析。在诱导能量发生波动时,根据所述特定波长信号的能量强度对整个光谱数据进行等比例修正,并将修正后的光谱数据作为有效数据输入分析单元进行分析。

基于上述任一具体实施例,一种激光诱导击穿光谱检测系统,还包括采集单元,所述采集单元和分光单元连接;所述采集单元用于采集所述等离子体光。

具体地,所述采集单元用于将所述待检测材料在所述激光诱导光源激励下产生的等离子光收集起来,并发送给所述分光单元。所述采集单元由若干个光学汇聚元件组成,能够实现宽光谱范围内的信号光收集,所述光学汇聚元件包括但不限于微透镜阵列、非球面透镜、球面透镜、非球面反射镜和抛物面反射镜中的至少一种。

所述采集单元采集的光谱范围通常在100至600nm范围内。也可以根据具体的需要,在某个具体应用的范围上进行光谱收集,例如仅针对C元素进行探测时,可以在193至193.5nm的范围内进行光谱收集;针对C、S、Si、P几种元素进行测试时,可以在190至350nm的范围内进行光谱收集。

为了更好地理解与应用本发明提出的一种激光诱导击穿光谱检测系统,本发明进行以下示例,且本发明不仅局限于以下示例。

激光诱导光源为一台Nd:YAG工作物质的脉冲激光器,能够形成单脉冲能量100mJ、重复频率10Hz、脉冲宽度20ns的激光输出。激光诱导光源输出的激光在待检测材料上激励形成等离子体,进行探测分析。本示例中,待检测材料是一块多元素成分的合金材料。采集单元是由非球面反射镜和一个焦距为500mm的透镜组合成的光学镜头,能够实现对等离子体发射出等离子体光的汇聚。分光单元选用的是andor公司的中阶梯光栅光谱仪,光栅分辨率0.02nm,光谱范围200~600nm。所述分光单元输出的光谱数据是一个二维矩阵数组,其中一列为信号强度,另一列为对应的波长。在每次激光诱导产生等离子体后都进行光谱数据的采集。

图2为激光参数监测单元102的结构示意图,如图2所示,所述激光参数监测单元102包括能量计、光电探头、CCD和偏振度分析仪。所述激光参数监测单元102对应完成如下功能:(1)通过能量计对激光诱导光源101输出激光能量进行监测;(2)通过光电二极管探头对诱导激光与采集单元采集等离子体光间延时误差进行探测;(3)通过科学CCD对激光光束截面光斑,即近场分布进行探测;(4)通过偏振度分析仪进行激光分光偏振度进行分析。激光参数监测单元102监测上述激光参数并传递给数据筛选单元。

数据筛选单元通过软件实现对光谱数据的筛选和/或修正。针对激光参数监测单元102通过能量计测得的能量值,设定在前10个脉冲的均值波动±2%范围为有效光谱数据的评价标准。如果获得的光谱数据对应的脉冲能量的波动值在±2%范围以内,判断为有效光谱数据,输入成分分析单元;如果脉冲能量超出均值±2%的范围,将所述光谱数据被视为无效数据。针对采集到的每个诱导脉冲的光斑分布,可以计算近场能量分布的质心,根据质心的漂移进行筛选。对于其他的参数,也可以建立类似的评判标准,并通过“与”或者“或”的逻辑关系,进行组合评价构成筛选规则,用于判读光谱数据的有效性。

成分分析单元通过标样定标的数据处理方法对待检测材料106的成分进行定性定量的分析。在建立标样数据库过程中和对待测材料进行光谱数据采集的过程中,均选用通过激光参数监测单元102和数据筛选单元进行光谱数据采集、筛选和处理的过程;也用于标样定标过程中对未知样品进行数据采集分析的过程。

本示例根据激光诱导光源101输出激光的激光参数对光谱数据进行筛选,降低了激光诱导光源101输出端的干扰因素,有效提高了光谱数据的稳定性,实现了高精度的成分分析。

最后,本申请的方法仅为较佳的实施方案,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1