一种翼尖涡流区域内飞机飞行安全的评估方法及系统与流程

文档序号:14673090发布日期:2018-06-12 21:06阅读:610来源:国知局
一种翼尖涡流区域内飞机飞行安全的评估方法及系统与流程

本发明涉及翼尖涡流领域,特别涉及一种翼尖涡流区域内飞机飞行安全的评估方法及系统。



背景技术:

“翼尖涡流(Tip Vortex)”又称为翼尖涡,一般飞机的翼面都是利用伯努利原理,使流经上表面的流体流速较快,压力较低,因而产生向上的升力。下翼面的压强比上翼面高,在上、下翼面压强差的作用下,下翼面的气流就绕过翼尖流向上翼面,这样就使下翼面的流线由机翼的翼根向翼尖倾斜,而上翼面的流线则由翼尖偏向翼根,但到了翼面尖端的地方,由于再也没有翼面的分隔,使得下方的高压气流循着翼尖往上滚卷流动到较低压的翼面上侧,加上本来流体就往后方流动,形成一种螺旋式的漩涡运动,翼尖涡流就这样产生了。

因为翼尖涡流来自翼面上下方气流的压力和流速的差异,而翼面上下的压力差就是机翼升力的来源,因此翼尖涡流的强度会和翼面可提供的升力成正比。而翼面提供的升力大小须至少是飞机的重量,这样飞机才飞得起来,因此一般而言,飞机越大,翼尖涡流也越强。目前营运中最大的民航机波音787型客机和A380型客机,就有很强很大的翼尖涡流。

翼尖涡流一般情况下会对处在其影响范围内的飞行器产生诸多不利的影响,严重影响飞行安全,飞机在前飞过程中,在左右两翼尖的后方也会拖出很强的翼尖旋涡,这一对很强的旋涡将对周围流场起强烈的速度诱导作用,且旋涡的强度正比于飞机的重量,即大型运输飞机的重量大,尾涡强度很强,其翼尖涡可延伸在飞机后方几公里的地方,旋涡区切向的速度分量要在旋涡形成后6到8分钟才消失。由于旋涡区域中空气的速度的大小和方向变化剧烈,进入到这一区域中的小飞机会出现抖动、下沉,改变飞行状态,发动机停转甚至翻转等现象,甚至导致飞行事故的发生。特别是在飞机起飞和着陆时,前面一架飞机拖出的翼尖尾涡将直接危害后面一架飞机的安全。

目前主要采用两种方法来规避这种影响,一种是采用特殊的机翼翼尖设计来减弱翼尖涡的强度,从而减弱其对后面飞机的影响,但这种方法效果有限,对翼尖涡减弱的幅度有限,飞机飞行安全无法保障;另一种是增大两架飞机之间的起飞时间间隔,给前面飞机的翼尖涡充分的时间去耗散,这种方法限制了机场的运行能力,尤其是现在航线日益繁忙的情况下,会造成飞机资源浪费严重。



技术实现要素:

本发明的目的是提供一种翼尖涡流区域内飞机飞行安全的评估方法及系统,以解决现有技术中无法评估在翼尖涡流区域内的飞机飞行安全,且飞机资源浪费严重的问题。

为实现上述目的,本发明提供了如下方案:

一种翼尖涡流区域内飞机飞行安全的评估方法,包括:

利用风洞试验,计算在长机所产生的翼尖涡流区域内僚机的初始数据;所述初始数据包括初始升力系数以及初始阻力系数;

获取所述长机和所述僚机编队过程中所述僚机的位置参数;所述位置参数包括流向脉动速度、法向脉动速度以及展向涡量;

根据所述位置参数建立克里金响应面模型;所述克里金响应面模型包括关于升力系数的克里金响应面模型以及关于阻力系数的克里金响应面模型;

根据所述克里金响应面模型以及所述初始数据评估所述僚机当前飞行是否安全,得到第一评估结果;

若所述第一评估结果表示为所述僚机当前飞行安全,再次获取所述长机和所述僚机编队过程中所述僚机的位置参数;

若所述第一评估结果表示为所述僚机当前飞行不安全,重新确定所述僚机的飞行参数;所述飞行参数包括飞行路线、飞行速度。

可选的,所述利用风洞试验,计算在长机所产生的翼尖涡流区域内僚机的初始数据,具体包括:

利用风洞试验,根据公式以及公式计算在长机所产生的翼尖涡流区域内僚机的初始数据;

其中,CL为初始升力系数,CL0为零度迎角时僚机的升力系数,为飞机升力线斜率,CD为初始阻力系数,CD0为零度迎角时僚机的阻力系数,为阻力系数对迎角的导数,为阻力系数对迎角平方的倒数,为阻力系数对迎角立方的导数,α为迎角。

可选的,所述根据所述位置参数建立克里金响应面模型,具体包括:

根据所述位置参数获取所述僚机的飞行数据;所述飞行数据包括飞行升力系数以及飞行阻力系数;

根据所述位置参数以及所述飞行数据建立克里金响应面模型;

其中,所述关于升力系数的克里金响应面模型是根据所述位置参数以及所述飞行升力系数建立的;所述关于阻力系数的克里金响应面模型是根据所述位置参数以及所述飞行阻力系数建立的。

可选的,所述根据所述克里金响应面模型以及所述初始数据评估所述僚机当前飞行是否安全,得到第一评估结果,具体包括:

根据所述克里金响应面模型以及初始数据确定等效洗流角度;所述等效洗流角度包括升力的等效洗流角度以及阻力的等效洗流角度;所述等效洗流角度为上洗角或下洗角;

根据所述等效洗流角度评估所述僚机当前飞行是否安全,得到第一评估结果;

若所述第一评估结果表示为所述僚机当前飞行安全,再次获取所述长机和所述僚机编队过程中所述僚机的位置参数;

若所述第一评估结果表示为所述僚机当前飞行不安全,重新确定所述僚机的飞行参数;所述飞行参数包括飞行路线、飞行速度。

可选的,所述根据所述克里金响应面模型以及初始数据确定等效洗流角度,具体包括:

采用拉丁超立方抽样法对所述长机和所述僚机所形成的编队空间进行网格划分,得到多个网格点;

根据所述关于升力系数的克里金响应面模型以及所述初始数据确定每个所述网格点的等效洗流角度。

一种翼尖涡流区域内飞机飞行安全的评估系统,包括:

初始数据获取模块,用于利用风洞试验,计算在长机所产生的翼尖涡流区域内僚机的初始数据;所述初始数据包括初始升力系数以及初始阻力系数;

位置参数获取模块,用于获取所述长机和所述僚机编队过程中所述僚机的位置参数;所述位置参数包括流向脉动速度、法向脉动速度以及展向涡量;

克里金响应面模型建立模块,用于根据所述位置参数建立克里金响应面模型;所述克里金响应面模型包括关于升力系数的克里金响应面模型以及关于阻力系数的克里金响应面模型;

评估模块,用于根据所述克里金响应面模型以及所述初始数据评估所述僚机当前飞行是否安全,得到第一评估结果;

位置参数再次获取模块,用于若所述第一评估结果表示为所述僚机当前飞行安全,再次获取所述长机和所述僚机编队过程中所述僚机的位置参数;

飞行参数确定模块,用于若所述第一评估结果表示为所述僚机当前飞行不安全,重新确定所述僚机的飞行参数;所述飞行参数包括飞行路线、飞行速度。

可选的,所述初始数据获取模块,具体包括:

初始数据计算单元,用于利用风洞试验,根据公式以及公式计算在长机所产生的翼尖涡流区域内僚机的初始数据;

其中,CL为初始升力系数,CL0为零度迎角时僚机的升力系数,为飞机升力线斜率,CD为初始阻力系数,CD0为零度迎角时僚机的阻力系数,为阻力系数对迎角的导数,为阻力系数对迎角平方的倒数,为阻力系数对迎角立方的导数,α为迎角。

可选的,所述克里金响应面模型建立模块,具体包括:

飞行数据获取单元,用于根据所述位置参数获取所述僚机的飞行数据;所述飞行数据包括飞行升力系数以及飞行阻力系数;

克里金响应面模型建立单元,用于根据所述位置参数以及所述飞行数据建立克里金响应面模型;

其中,所述关于升力系数的克里金响应面模型是根据所述位置参数以及所述飞行升力系数建立的;所述关于阻力系数的克里金响应面模型是根据所述位置参数以及所述飞行阻力系数建立的。

可选的,所述评估模块,具体包括:

等效洗流角度确定单元,用于根据所述克里金响应面模型以及初始数据确定等效洗流角度;所述等效洗流角度包括升力的等效洗流角度以及阻力的等效洗流角度;所述等效洗流角度为上洗角或下洗角;

评估单元,用于根据所述等效洗流角度评估所述僚机当前飞行是否安全,得到第一评估结果;

位置参数再次获取单元,用于若所述第一评估结果表示为所述僚机当前飞行安全,再次获取所述长机和所述僚机编队过程中所述僚机的位置参数;

飞行参数确定单元,用于若所述第一评估结果表示为所述僚机当前飞行不安全,重新确定所述僚机的飞行参数;所述飞行参数包括飞行路线、飞行速度。

可选的,所述等效洗流角度确定单元,具体包括:

划分子单元,用于采用拉丁超立方抽样法对所述长机和所述僚机所形成的编队空间进行网格划分,得到多个网格点;

等效洗流角度确定子单元,用于根据所述关于升力系数的克里金响应面模型以及所述初始数据确定每个所述网格点的等效洗流角度。

根据本发明提供的具体实施例,本发明公开了以下技术效果:本发明提供了一种翼尖涡流区域内飞机飞行安全的评估方法及系统,首先获取僚机自身的初始数据以及位置参数,通过建立克里金响应面模型对僚机的当前飞行是否存在安全隐患进行评估,从而实现预先得知当前飞机飞行所存在的隐患,提前做出下一步飞行的决策,并且在机场飞机起飞时,或者两架飞机的飞行过程中都能够进行安全隐患评估,不会限制机场的运行能力,降低了飞机资源的浪费。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。

图1为本发明所提供的评估方法流程图;

图2为本发明所提供的洗流效果示意图;

图3为本发明所提供的编队飞行纵向截面阻力求解的洗流角度;

图4本发明所提供的编队飞行纵向截面升力求解的洗流角度;

图5为本发明所提供的评估系统结构图。

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

本发明的目的是提供一种翼尖涡流区域内飞机飞行安全的评估方法及系统,能够评估在翼尖涡流区域内的飞机飞行安全,降低了飞机资源浪费。

为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。

由于翼尖涡流的影响会使飞机之后不同区域产生不同的洗流角度,因此,直接危害在翼尖涡流区域内的飞机的安全,本发明能够获取不同位置的洗流角度对在翼尖涡流区域飞行的飞机可以根据下洗角对飞机所受的气动力和气动力矩的变化进行预估,从而对尾涡中飞行进行风险评估,预防危险的发生。

图1为本发明所提供的评估方法流程图,如图1所示,一种翼尖涡流区域内飞机飞行安全的评估方法,包括:

步骤101:利用风洞试验,计算在长机所产生的翼尖涡流区域内僚机的初始数据;所述初始数据包括初始升力系数以及初始阻力系数。

通过风洞试验获取僚机单机升力/阻力数据,编队飞行一般针对飞机巡航状态附近进行,飞机的巡航角度一般为小迎角,即α<4°,升力系数可用线性拟合、阻力系数用三次函数拟合具体情况如下:

其中,CL为初始升力系数,CL0为零度迎角时僚机的升力系数,为飞机升力线斜率,CD为初始阻力系数,CD0为零度迎角时僚机的阻力系数,为阻力系数对迎角的导数,为阻力系数对迎角平方的倒数,为阻力系数对迎角立方的导数,α为迎角。

所述利用风洞试验,计算在长机所产生的翼尖涡流区域内僚机的初始数据,具体包括:利用风洞试验,根据公式(1)以及公式(2),计算在长机所产生的翼尖涡流区域内僚机的初始数据。

步骤102:获取所述长机和所述僚机编队过程中所述僚机的位置参数;所述位置参数包括流向脉动速度、法向脉动速度以及展向涡量。

针对双机编队过程中三个位置参数(流向x、法向y、展向z)进行试验设计,获取i组不同的位置参数(xi,yi,zi)。

步骤103:根据所述位置参数建立克里金响应面模型;所述克里金响应面模型包括关于升力系数的克里金响应面模型以及关于阻力系数的克里金响应面模型。

采用变量组(xi,yi,zi)和CLi构造升力系数对不同位置的关于升力系数的克里金(Kriging)响应面模型KrigingCL,采用变量组(xi,yi,zi)和CDi构造阻力系数对不同队形参数的Kriging响应面模型KrigingCD。

所述根据所述位置参数建立克里金响应面模型,具体包括:根据所述位置参数获取所述僚机的飞行数据;所述飞行数据包括飞行升力系数以及飞行阻力系数;根据所述位置参数以及所述飞行数据建立克里金响应面模型;其中,所述关于升力系数的克里金响应面模型是根据所述位置参数以及所述飞行升力系数建立的;所述关于阻力系数的克里金响应面模型是根据所述位置参数以及所述飞行阻力系数建立的。

步骤104:根据所述克里金响应面模型以及所述初始数据评估所述僚机当前飞行是否安全,若是,返回步骤102,若否,执行步骤105。

步骤105:重新确定所述僚机的飞行参数;所述飞行参数包括飞行路线、飞行速度。

图2为本发明所提供的洗流效果示意图,如图2所示,对在长机尾涡中飞行的僚机而言,假设长机尾涡流诱导的上洗速度为W,使得该处机翼的有效迎角增大了Δα,升力和阻力也相应偏转了Δα,则在铅垂坐标系中看升力和阻力的增量分别为:

ΔCL=CL′cos(Δα)+CD′sin(Δα)-CL (3)

ΔCD=CD′cos(Δα)-CL′sin(Δα)-CD (4)

CL’和CD’分别为加上诱导下洗角后的升力系数和阻力系数值。

一般来说诱导的上洗速度W<<U,因此Δα是一个很小的值,sin(Δα)≈Δα,cos(Δα)≈1,关于Δα的上述三个三角函数为公式(5),其中,U为来流速度。

将公式(3)代入公式(1)、(2)得到:

ΔCL=CL′-CL+CD′Δα (6)

ΔCD=CD′-CD-CL′Δα (7)

根据公式(1)和公式(2)对应的具有气流偏角的升力和阻力可表达为:

将公式(6)、(7)代入公式(8)、(9)得到:

略去二阶小量得到:

对编队队形空间进行网格划分,采用Kriging响应面模型KrigingCL预测每个网格点的升力ΔCL,采用Kriging响应面模型krigingCD预测每个网格点的阻力ΔCD。

通过公式(12)和(13)分别得到各网格点的升力等效洗流角度和阻力等效洗流角度。

根据所述克里金响应面模型以及初始数据确定等效洗流角度;所述等效洗流角度包括升力的等效洗流角度以及阻力的等效洗流角度;所述等效洗流角度为上洗角或下洗角;根据所述等效洗流角度评估所述僚机当前飞行是否安全,若是,再次获取所述长机和所述僚机编队过程中所述僚机的位置参数;若否,重新确定所述僚机的飞行参数;所述飞行参数包括飞行路线、飞行速度。

其中,升力的等效洗流角度是根据所述关于升力系数的克里金响应面模型以及所述初始数据确定的;阻力的等效洗流角度是根据所述关于阻力系数的克里金响应面模型以及所述初始数据确定的。

所述根据所述克里金响应面模型以及初始数据确定等效洗流角度,具体包括:采用拉丁超立方抽样法对所述长机和所述僚机所形成的编队空间进行网格划分,得到多个网格点;根据所述关于升力系数的克里金响应面模型以及所述初始数据确定每个所述网格点的等效洗流角度。

采用本发明所提供的一种翼尖涡流区域内飞机飞行安全的评估方法,根据等效洗流角度能够评估在翼尖涡流区域内的飞机飞行安全,降低了飞机资源浪费。

根据本发明所提供的识别方法,针对上单翼布局运输机的双机编队飞行进行洗流角度评估。

首先进行僚机的单机风洞试验,获取CL~α和CD~α曲线,对CL~α通过线性拟合获得:

CL=0.1684+0.1144α

对CD~α通过线性拟合获得:

CD=0.0235+0.0006α+0.00003α2+0.0003α3

在流向1.5b~5.0b,展向-0.35b~0.25b,法向-0.25b~0.25b的范围内对位置参数进行试验设计获取编队位置的n组样本点,这里n取200。

针对200个不同的位置开展风洞试验,获取僚机的气动力CLi,CDi。采用变量组(xi,yi,zi)和CLi构造升力系数对不同队形参数的Kriging响应面模型KrigingCL,采用变量组(xi,yi,zi)和CDi构造阻力系数对不同队形参数的Kriging响应面模型KrigingCD。

对编队队形空间进行网格划分,一般采用拉丁超立方方法对所需要模拟的三维空间进行划分,采用Kriging响应面模型KrigingCL预测每个网格点的升力ΔCL,采用Kriging响应面模型KrigingCD预测每个网格点的阻力ΔCD。利用公式(12)和公式(13)可以分别获取各网格点的升力等效洗流角度和阻力等效洗流角度。图3和图4分别给出Δx=3.0b流向截面的洗流角度,两个方程预测的洗流角度基本一致。

图5为本发明所提供的评估系统结构图,如图5所示,一种翼尖涡流区域内飞机飞行安全的评估系统,包括:

初始数据获取模块501,用于利用风洞试验,计算在长机所产生的翼尖涡流区域内僚机的初始数据;所述初始数据包括初始升力系数以及初始阻力系数。

所述初始数据获取模块501具体包括:初始数据计算单元,用于利用风洞试验,根据公式以及公式计算在长机所产生的翼尖涡流区域内僚机的初始数据;其中,CL为初始升力系数,CL0为零度迎角时僚机的升力系数,为飞机升力线斜率,CD为初始阻力系数,CD0为零度迎角时僚机的阻力系数,为阻力系数对迎角的导数,为阻力系数对迎角平方的倒数,为阻力系数对迎角立方的导数,α为迎角。

位置参数获取模块502,用于获取所述长机和所述僚机编队过程中所述僚机的位置参数;所述位置参数包括流向脉动速度、法向脉动速度以及展向涡量。

克里金响应面模型建立模块503,用于根据所述位置参数建立克里金响应面模型;所述克里金响应面模型包括关于升力系数的克里金响应面模型以及关于阻力系数的克里金响应面模型。

所述克里金响应面模型建立模块503具体包括:飞行数据获取单元,用于根据所述位置参数获取所述僚机的飞行数据;所述飞行数据包括飞行升力系数以及飞行阻力系数;克里金响应面模型建立单元,用于根据所述位置参数以及所述飞行数据建立克里金响应面模型;其中,所述关于升力系数的克里金响应面模型是根据所述位置参数以及所述飞行升力系数建立的;所述关于阻力系数的克里金响应面模型是根据所述位置参数以及所述飞行阻力系数建立的。

评估模块504,用于根据所述克里金响应面模型以及所述初始数据评估所述僚机当前飞行是否安全,得到第一评估结果。

所述评估模块504具体包括:等效洗流角度确定单元,用于根据所述克里金响应面模型以及初始数据确定等效洗流角度;所述等效洗流角度包括升力的等效洗流角度以及阻力的等效洗流角度;所述等效洗流角度为上洗角或下洗角;评估单元,用于根据所述等效洗流角度评估所述僚机当前飞行是否安全,得到第一评估结果;位置参数再次获取单元,用于若所述第一评估结果表示为所述僚机当前飞行安全,再次获取所述长机和所述僚机编队过程中所述僚机的位置参数;飞行参数确定单元,用于若所述第一评估结果表示为所述僚机当前飞行不安全,重新确定所述僚机的飞行参数;所述飞行参数包括飞行路线、飞行速度。

所述等效洗流角度确定单元,具体包括:划分子单元,用于采用拉丁超立方抽样法对所述长机和所述僚机所形成的编队空间进行网格划分,得到多个网格点;等效洗流角度确定子单元,用于根据所述关于升力系数的克里金响应面模型以及所述初始数据确定每个所述网格点的等效洗流角度。

若所述第一评估结果表示为所述僚机当前飞行安全,再次获取所述长机和所述僚机编队过程中所述僚机的位置参数。

飞行参数确定模块505,用于若所述第一评估结果表示为所述僚机当前飞行不安全,重新确定所述僚机的飞行参数;所述飞行参数包括飞行路线、飞行速度。

采用本发明所提供的评估方法及系统,能够预先知道下洗角的角度,从而可以通过飞机控制率,预估飞机所受的气动力和气动力矩的变化趋势和幅度,对风险进行准确评估,提前做出决策。

本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的系统而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。

本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1