检测电容的装置、电子设备和检测压力的装置的制作方法

文档序号:11447869阅读:341来源:国知局
检测电容的装置、电子设备和检测压力的装置的制造方法

本实用新型涉及信息技术领域,并且更具体地,涉及一种检测电容的装置、电子设备和检测压力的装置。



背景技术:

随着信息技术的发展,越来越多的电子设备采用电容式传感器检测外界物理信号。如电容式触摸屏,电容式力传感器,电容式位移传感器等。实现电容传感器的一种关键技术是电容检测技术,通过电容检测技术检测电容器的电容变化以检测相应待测信号。

检测电容的精确度,决定了信号检测的精确度。因此,如何提高检测电容的精确度,成为亟待解决的一个技术问题。



技术实现要素:

本实用新型实施例提供了一种检测电容的装置、电子设备和检测压力的装置,能够提高电容检测的精确度。

第一方面,提供了一种检测电容的装置,包括:

打码电路110,用于对至少一个待测电容器周期性充放电;

变换电路120,与所述打码电路110相连,用于将至少一个待测电容器的电容信号转换为电压信号;

抵消电路130,与所述变换电路120相连,用于抵消至少一个待测电容器的初始电容,以使变换电路120输出的同一个待测电容器不同时刻的电压信号的差模信号表示该同一个待测电容器的电容变化,或者变换电路120输出的不同待测电容器对应的电压信号的差分信号表示该不同待测电容器的电容变化。

本实用新型实施例的检测电容的装置能够检测出微小电容变化,能够提高电容检测的精确度。

在一些可能的实现方式中,至少一个待测电容器包括第一待测电容器101;

变换电路120输出的不同时刻的电压信号的差模信号表示第一待测电容器101的电容变化。

在一些可能的实现方式中,打码电路110包括第一开关111、第二开关112、第三开关113和第一直流电压源115;

第一待测电容器101的一端通过第三开关113和第一开关111连接至第一直流电压源115,且第一待测电容器101的一端,通过第三开关113和第二开关112接地,第一待测电容器101的另一端接地。

在一些可能的实现方式中,变换电路120包括第四开关121、第五开关122、第一反馈电容器123和第一运算放大器124;

第四开关121连接于第一待测电容器101的一端和第一运算放大器124的反向输入端之间;

第一反馈电容器123连接于第一运算放大器124的反向输入端和输出端之间;

第五开关122连接于第一运算放大器124的反向输入端和输出端之间;

第一运算放大器124的同向输入端输入共模电压Vcm。

在一些可能的实现方式中,抵消电路130包括第一可调电容器131、第六开关132、第七开关133、第八开关134、第九开关135和第二直流电压源139;

第一可调电容器131的一端通过第六开关132连接至第二直流电压源139,且该第一可调电容器131的一端通过第七开关133接地,第一可调电容器131的另一端连接至第一运算放大器124的反向输入端;

第八开关134和第九开关135用于改变控制第六开关132和第七开关133的开关控制信号。

采用正负打码的工作时序,本实用新型实施例的检测电容的装置具有很强的低频共模噪声和1/f噪声抑制能力。

在一些可能的实现方式中,至少一个待测电容器包括第一待测电容器101和第二待测电容器102;

变换电路120输出的第一待测电容器101和第二待测电容器102对应的电压信号的差分信号表示第一待测电容器101和第二待测电容器102的电容变化。

在一些可能的实现方式中,打码电路110包括第一开关111、第二开关112、第三开关113、第十开关114和第一直流电压源115;

第一待测电容器101的一端通过第三开关113和第一开关111连接至第一直流电压源115,且该第一待测电容器101的一端通过第三开关113和第二开关112接地,第一待测电容器101的另一端接地;

第二待测电容器102的一端通过第十开关114和第一开关111连接至第一直流电压源115,且该第二待测电容器102的一端通过第十开关114和第二开关112接地,第二待测电容器102的另一端接地。

在一些可能的实现方式中,变换电路120包括第四开关121、第五开关122、第一反馈电容器123、第一运算放大器124、第十一开关125、第十二开关126、第二反馈电容器127和第二运算放大器128;

第四开关121连接于第一待测电容器101的一端和第一运算放大器124的反向输入端之间;

第一反馈电容器123连接于第一运算放大器124的反向输入端和输出端之间;

第五开关122连接于第一运算放大器124的反向输入端和输出端之间;

第十一开关125连接于第二待测电容器102的一端和第二运算放大器128的反向输入端之间;

第二反馈电容器127连接于第二运算放大器128的反向输入端和输出端之间;

第十二开关126连接于第二运算放大器128的反向输入端和输出端之间;

第一运算放大器124和第二运算放大器128的同向输入端均输入共模电压Vcm。

在一些可能的实现方式中,抵消电路130包括第一可调电容器131、第六开关132、第七开关133、第八开关134、第九开关135、第二可调电容器136、第十三开关137、第十四开关138和第二直流电压源139;

第一可调电容器131的一端通过第六开关132连接至第二直流电压源139,且该第一可调电容器131的一端通过第七开关133接地,第一可调电容器131的另一端连接至第一运算放大器124的反向输入端;

第二可调电容器136的一端通过第十三开关137连接至第二直流电压源139,且该第二可调电容器136的一端通过第十四开关138接地,第二可调电容器136的另一端连接至第二运算放大器128的反向输入端;

第八开关134和第九开关135用于改变控制第六开关132、第七开关133、第十三开关137和第十四开关138的开关控制信号。

在一些可能的实现方式中,该装置还包括:

可编程增益放大器140,用于根据第一待测电容器101和第二待测电容器102对应的电压信号输出差分信号。

在一些可能的实现方式中,第一直流电压源115和第二直流电压源139的输出电压相等。

在一些可能的实现方式中,该输出电压为该共模电压Vcm的两倍。

在一些可能的实现方式中,第一待测电容器和第二待测电容器是差分电容传感器中的电容器。

采用差分结构,本实用新型实施例的检测电容的装置具有很强的温度漂移抑制能力。

第二方面,提供了一种电子设备,包括第一方面或第一方面的任一种可能的实现方式中的检测电容的装置。

第三方面,提供了一种检测压力的装置,包括第一方面或第一方面的任一种可能的实现方式中的检测电容的装置,其中,该检测压力的装置待检测的压力关联该检测电容的装置待检测的待测电容器的电容变化。

附图说明

图1是本实用新型一个实施例的检测电容的装置的示意图。

图2是本实用新型另一个实施例的检测电容的装置的示意图。

图3是本实用新型实施例的检测电容的装置的工作时序图。

图4a-4c是本实用新型实施例的差分电容压力传感器的示意图。

图5是本实用新型又一个实施例的检测电容的装置的示意图。

具体实施方式

本实用新型实施例的技术方案可以应用于各种采用触控的设备中,例如,主动笔、电容笔、移动终端、电脑、家电等。本实用新型实施例的检测电容的装置可以设置于各种触控设备中,以用于检测触控电容器,即待测电容器的电容变化,进而检测由触控产生的压力变化等。

应理解,待测电容器的电容变化既可以是相对值也可以是绝对值,例如,在待测电容器的初始电容为零的情况下,待测电容器的电容变化即为其电容的绝对值。

还应理解,“电容器”也可以简称为“电容”,相应地,电容器的电容也可以称为电容值。以下为了便于描述,以电容器和电容器的电容为例进行说明。

图1示出了本实用新型实施例的检测电容的装置的示意图。

如图1所示,该装置可以包括打码电路110、变换电路120和抵消电路130。

打码电路110用于对至少一个待测电容器周期性充放电。

打码电路110也可以称为驱动电路,例如,可以通过开关切换,实现对待测电容器的充放电。

变换电路120与所述打码电路110相连,用于将该至少一个待测电容器的电容信号转换为电压信号。

变换电路120为电容/电压(C/V)变换电路,例如,可以通过运算放大器以及反馈电路将电容信号转换为电压信号。

抵消电路130与所述变换电路120相连,用于抵消该至少一个待测电容器的初始电容,以使变换电路120输出的同一个待测电容器不同时刻的电压信号的差模信号表示该同一个待测电容器的电容变化,或者变换电路120输出的不同待测电容器对应的电压信号的差分信号表示该不同待测电容器的电容变化。

在本实用新型实施例中,通过抵消电路130抵消待测电容器的初始电容(包括寄生电容),例如,通过可调电容器抵消待测电容器的初始电容,使待测电容器的电容未变化时,输出为零,从而使变换电路120的输出信号关联待测电容器的电容变化。

采用抵消电路将初始值设置为零,从而可以提高电容检测的动态范围。

可选地,在本实用新型一个实施例中,该至少一个待测电容器包括第一待测电容器;

变换电路120输出的不同时刻的电压信号的差模信号表示第一待测电容器的电容变化。

具体而言,在待测电容器的数量为1时,通过变换电路120输出的不同时刻的电压信号的差模信号,反映这1个待测电容器的电容变化。

图2示出了本实用新型实施例的检测电容的装置的一种具体实现方式的示意图。

应理解,图2只是一种示例,而非限制本实用新型实施例的范围。

如图2所示,图1中的打码电路110可以包括第一开关111、第二开关112、第三开关113和第一直流电压源115。

第一待测电容器101的一端通过第三开关113和第一开关111连接至第一直流电压源115,且该端通过第三开关113和第二开关112接地,第一待测电容器101的另一端接地。

第一开关111通过第一开关控制信号(表示为PNSW)控制,第二开关112通过PNSW的反相信号控制,第三开关113通过第二开关控制信号(表示为SW)控制。

第一开关111和第三开关113连通,第二开关112关断时,第一待测电容器101由第一直流电压源115充电。第一直流电压源115的输出电压可以表示为Vdc。

第二开关112和第三开关113连通,第一开关111关断时,第一待测电容器101放电。

如图2所示,图1中的变换电路120可以包括第四开关121、第五开关122、第一反馈电容器123和第一运算放大器124。

第四开关121通过SW的反相信号控制,第五开关122通过SW控制。

第四开关121连接于第一待测电容器101的一端和第一运算放大器124的反向输入端之间;

第一反馈电容器123连接于第一运算放大器124的反向输入端和输出端之间;

第五开关122连接于第一运算放大器124的反向输入端和输出端之间;

第一运算放大器124的同向输入端输入共模电压Vcm。

可选地,直流电压Vdc可以为共模电压Vcm的两倍,即Vcm=0.5*Vdc。

如图2所示,图1中的抵消电路130可以包括第一可调电容器131、第六开关132、第七开关133、第八开关134、第九开关135和第二直流电压源139。

第二直流电压源139和第一直流电压源115的输出电压相等,即均为Vdc。

第八开关134通过PNSW控制,第九开关135通过PNSW的反相信号控制,第六开关132通过第三开关控制信号CSW控制,第七开关133通过CSW的反相信号控制。

第一可调电容器131的一端通过第六开关132连接至第二直流电压源139,且该端通过第七开关133接地,第一可调电容器131的另一端连接至第一运算放大器124的反向输入端;

第八开关134和第九开关135用于改变控制第六开关132和第七开关133的开关控制信号。

具体地,如图2所示,CSW和分别是第六开关132和第七开关133的开关控制信号。第八开关134连通,第九开关135关断时,CSW等于SW;第八开关134关断,第九开关135连通时,CSW等于由CSW和再分别控制第六开关132和第七开关133。

可选地,图2中第一开关控制信号PNSW和第二开关控制信号SW可以采用如图3所示的信号。

下面结合图3描述图2所示电路的工作原理。

一个完整的电容检测周期由t1、t2、t3、t4组成。该检测时序为正负打码时序。

t1:第一开关111、第三开关113、第八开关134、第六开关132、及第五开关122闭合,第二开关112,第四开关121,第九开关135、及第七开关133断开,此刻直流电压Vdc向第一待测电容器101正向充电。

t2:第二开关112、第三开关113、第九开关135、第六开关132、及第五开关122断开,第一开关111、第四开关121、第八开关134、及第七开关133闭合,此刻,第一待测电容器101上电荷向第一反馈电容器123及第一可调电容器131上转移。此时Vout输出为:

其中,C1表示第一待测电容器101的电容,Cfb表示第一可调电容器131的电容,Cc表示第一反馈电容器123的电容。

t3:第二开关112、第三开关113、第九开关135、第七开关133、及第五开关122闭合,第一开关111、第四开关121、第八开关134、及第六开关132断开,此刻第一待测电容器101短接到地,第一可调电容器131反向充电。

t4:第一开关111、第三开关113、第八开关134、第七开关133、及第五开关122断开,第二开关112、第四开关121、第九开关135、及第六开关132闭合,此刻,第一反馈电容器123和第一可调电容器131上电荷向第一待测电容器101上转移。此时Vout输出为:

后级采样电路可通过在t2和t4位置对Vout输出进行采样并相减得出差模信号大小:

在初始状态,可通过调节第一可调电容器131的电容大小使Cc=0.5C10。这样,初始电容C10被完全抵消掉,从而输出差模信号大小:

其中,ΔC表示第一待测电容器101的电容的变化。

由上述分析可知,采用正负打码的工作时序,本实用新型实施例的检测电容的装置具有很强的低频共模噪声和1/f噪声(也称为闪烁噪声)抑制能力。也就是说,本实用新型实施例的检测电容的装置能够提高抗干扰性能,这样,当待测电容发生微小变化时,也能够检测到。因此,本实用新型实施例的检测电容的装置能够检测出微小电容变化,能够提高电容检测的精确度。

另外,本实用新型实施例的上述抵消电路可以完全抵消初始电容,具有较高的抵消效率。

可选地,在本实用新型另一个实施例中,该至少一个待测电容器包括第一待测电容器和第二待测电容器;

变换电路120输出的第一待测电容器和第二待测电容器对应的电压信号的差分信号表示第一待测电容器和第二待测电容器的电容变化。

具体而言,在待测电容器的数量为2时,通过变换电路120输出的两个待测电容器对应的电压信号的差分信号,反映两个待测电容器的电容变化。

可选地,对于第一待测电容器和第二待测电容器的电容,可以其中一个待测电容器的电容是变化的,另一个待测电容器的电容是不变化的,不变化的电容可以是标准电容;第一待测电容器和第二待测电容器也可以构成差分电容传感器,即可以是差分电容传感器中的两个电容器。例如,该差分电容传感器可以是差分电容压力传感器。

以差分电容压力传感器为例,图4a-4c分别示出了三种差分电容压力传感器的示意图。如图4a-4c所示,向差分电容压力传感器施加压力,将会引起中间电极片形变或者位移,从而引起电容C1增大,C2减小,形成差分的ΔC。ΔC为C1和C2的变化量之和。

图5示出了本实用新型实施例的检测电容的装置的另一种具体实现方式的示意图。

应理解,图5只是一种示例,而非限制本实用新型实施例的范围。

如图5所示,图1中的打码电路110可以包括第一开关111、第二开关112、第三开关113、第十开关114和第一直流电压源115。

第一开关111通过第一开关控制信号PNSW控制,第二开关112通过PNSW的反相信号控制,第三开关113和第十开关114通过第二开关控制信号SW控制。

第一待测电容器101的一端通过第三开关113和第一开关111连接至第一直流电压源115,且该端通过第三开关113和第二开关112接地,第一待测电容器101的另一端接地。

第二待测电容器102的一端通过第十开关114和第一开关111连接至第一直流电压源115,且该端通过第十开关114和第二开关112接地,第二待测电容器102的另一端接地。

第一开关111、第三开关113和第十开关114连通,第二开关112关断时,第一待测电容器101和第二待测电容器102由第一直流电压源115充电;

第二开关112、第三开关113和第十开关114连通,第一开关111关断时,第一待测电容器101和第二待测电容器102放电。

如图5所示,图1中的变换电路120可以包括第四开关121、第五开关122、第一反馈电容器123、第一运算放大器124、第十一开关125、第十二开关126、第二反馈电容器127和第二运算放大器128。

第四开关121和第十一开关125通过SW的反相信号控制,第五开关122和第十二开关126通过SW控制。

第四开关121连接于第一待测电容器101的一端和第一运算放大器124的反向输入端之间;

第一反馈电容器123连接于第一运算放大器124的反向输入端和输出端之间;

第五开关122连接于第一运算放大器124的反向输入端和输出端之间;

第十一开关125连接于第二待测电容器102的一端和第二运算放大器128的反向输入端之间;

第二反馈电容器127连接于第二运算放大器128的反向输入端和输出端之间;

第十二开关126连接于第二运算放大器128的反向输入端和输出端之间;

第一运算放大器124和第二运算放大器128的同向输入端均输入共模电压Vcm。

如图5所示,图1中的抵消电路130包括第一可调电容器131、第六开关132、第七开关133、第八开关134、第九开关135、第二可调电容器136、第十三开关137、第十四开关138和第二直流电压源139。

第八开关134通过PNSW控制,第九开关135通过PNSW的反相信号控制,第六开关132和第十三开关137通过开关控制信号CSW控制,第七开关133和第十四开关138通过CSW的反相信号控制。

第一可调电容器131的一端通过第六开关132连接至第二直流电压源139,且该端通过第七开关133接地,第一可调电容器131的另一端连接至第一运算放大器124的反向输入端;

第二可调电容器136的一端通过第十三开关137连接至第二直流电压源139,且该端通过第十四开关138接地,第二可调电容器136的另一端连接至第二运算放大器128的反向输入端;

第八开关134和第九开关135用于改变控制第六开关132、第七开关133、第十三开关137和第十四开关138的开关控制信号。

可选地,图5中第一开关控制信号PNSW和第二开关控制信号SW可以采用如图3所示的信号。图5中电路的工作时序可以与图2相同。

应理解,图5中分别对应于第一待测电容器101和第二待测电容器102的两路电路中的每一路的工作原理与图2中的电路的工作原理类似。

可选地,图5所示的装置可用于压力传感器。在这种情况下,第一待测电容器101和第二待测电容器102可以是压力传感器中的两个电容器,例如,可以是图4a-4c中的C1和C2。通过图5所示的装置可以检测到第一待测电容器101和第二待测电容器102的电容变化,进而得到压力的变化。

在初始状态,可通过调节第一可调电容器131和第二可调电容器136的电容,使差分输出电压为零。当第一待测电容器101和第二待测电容器102的电容变化时,例如施加压力时,输出差分电压为:

其中,ΔC表示第一待测电容器101和第二待测电容器102的变化量之和。也就是说,输出差分电压可以表示两个待测电容器的电容变化。

可选地,如图5所示,该装置还可以包括:

可编程增益放大器140,用于根据第一待测电容器101和第二待测电容器102对应的电压信号输出差分信号。

利用可编程增益放大器140输出差分信号,并可以稳定差分输出的共模电压。

采用差分结构,本实用新型实施例的检测电容的装置具有很强的温度漂移抑制能力。

可选地,还可以对电路输出进行多次积分平均,以有效提高系统性噪比,提高检测精度,尤其针对待测电容器的电容为fF~pF级的微小电容的情况。

可选地,可以采用模拟积分方案,即增加一级积分电路或改变检测电路时序以增加C/V变换电路的积分次数,然后再进行模数转换器(Analog-to-Digital Converter,ADC)采样。也可以采用数字积分方案,即检测电路输出直接送入ADC进行采样,然后通过数字处理器对采样数据进行积分处理。

综上所述,本实用新型实施例的检测电容的装置,采用正负打码的工作时序,能有效抑制低频噪声和1/f噪声;采用差分结构,具有温飘抑制能力,零点漂移抑制能力;采用受开关控制信号控制的开关与电容器组成的开关电容电路,具有较低的功耗;从而可以使该装置具有高信噪比,便于集成电路(integrated circuit,IC)集成,并且具有较高的检测灵敏度,其可以检测到fF级的电容。

本实用新型实施例还提供了一种电子设备,该电子设备可以包括上述本实用新型实施例的检测电容的装置。

本实用新型实施例还提供了一种检测压力的装置,该检测压力的装置可以包括上述本实用新型实施例的检测电容的装置,其中,该检测压力的装置待检测的压力关联该检测电容的装置待检测的待测电容器的电容变化。

例如,该检测压力的装置具体可以为压力传感器,该压力传感器可以设置于触控笔中,但本实用新型实施例对此并不限定。

应理解,本文中的具体的例子只是为了帮助本领域技术人员更好地理解本实用新型实施例,而非限制本实用新型实施例的范围。

本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本实用新型的范围。

在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。

所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实用新型实施例方案的目的。

另外,在本实用新型各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。

所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本实用新型的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本实用新型各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。

以上所述,仅为本实用新型的具体实施方式,但本实用新型的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本实用新型揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本实用新型的保护范围之内。因此,本实用新型的保护范围应以权利要求的保护范围为准。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1