一种光致发光柠檬酸基纳米粒、用于活细胞标记的应用以及方法与流程

文档序号:15044671发布日期:2018-07-27 22:20阅读:303来源:国知局

本发明涉及一种光致发光柠檬酸基纳米粒、用于活细胞标记的应用以及方法。



背景技术:

干细胞及肿瘤细胞标记和成像在干细胞移植和肿瘤细胞发生发展的研究中具有重要的意义。目前常用的细胞标记材料主要有无机量子点材料及有机染料如荧光素异硫氰酸酯、罗丹明异硫氰酸酯、吲哚类菁染料cy3等。无机量子点具有优良的光致发光和光稳定性能,可稳定标记细胞数月,但由于其含有重金属元素成分及不可降解的特性导致其潜在的细胞毒性,极大的限制了量子点在活细胞标记中的进一步应用。有机染料类细胞标记物光稳定性差、荧光信号强度弱及具有一定的毒性,在细胞标记中的应用有限。因此,急需研发一种具有优异的光稳定性能、发光性能及良好的生物相容性的新型荧光探针以长期标记干细胞及肿瘤细胞并研究其行为。



技术实现要素:

本发明针对上述问题,提供一种光致发光柠檬酸基纳米粒、用于活细胞标记的应用以及方法。

本发明所采取的技术方案如下:一种光致发光柠檬酸基纳米粒,其制备过程包括以下步骤:

(1)制备聚(柠檬酸-硅氧烷)高分子材料:将1,8-辛二醇(熔点63°c)、柠檬酸(熔点153°c,175°c分解)、3-氨基丙基三乙氧基硅烷加入反应装置中,在氮气保护下,在搅拌下加热至155-165°c,待1,8-辛二醇、柠檬酸均溶解后,在130-150°c下反应0.5-1.5h,得到聚合物,将聚合物水洗、冷冻干燥,得到聚(柠檬酸-硅氧烷)高分子材料;

(2)将步骤(1)得到的聚(柠檬酸-硅氧烷)高分子材料加入二甲基亚砜中,室温下用磁力搅拌器搅拌溶解;

(3)将步骤(2)中的聚(柠檬酸-硅氧烷)溶液逐滴加入聚乙烯醇溶液中,在一定的速度下搅拌;

(4)将步骤(3)得到的混合物进行离心,对沉淀物进行洗涤和冷冻干燥,得到光致发光柠檬酸基纳米粒。

优选地,步骤(1)中,1,8-辛二醇、柠檬酸、3-氨基丙基三乙氧基硅烷的摩尔比为0.9~1.1:1:0.2-0.5。

优选地,步骤(2)中,聚乙烯醇的浓度范围为0.5%~2%,其溶解温度范围为75℃~100℃,搅拌速度为100~300rpm。

优选地,离心速度为10000rpm~15000rpm,离心时间为30分钟;离心所得到的沉淀物使用去离子水洗涤3次,然后将其在-80°c的冷冻干燥机中干燥24小时。

上述的光致发光柠檬酸基纳米粒用于活细胞荧光标记的应用。

一种上述的光致发光柠檬酸基纳米粒用于活细胞荧光标记的方法,过程如下:将活细胞接种于细胞培养瓶中,加入含胎牛血清的培养基于培养箱中培养,然后将培养基更换为含光致发光柠檬酸基纳米粒的新鲜培养基,继续孵育,即可实现对活细胞的荧光标记。

优选地,所述活细胞为脂肪干细胞或人肝癌细胞,但不限于这两类细胞。

优选地,所述光致发光柠檬酸基纳米粒的浓度为30~300μg/ml。

优选地,将培养基更换为含光致发光柠檬酸基纳米粒的新鲜培养基,继续孵育0.5h~24h。

本发明的有益效果如下:与现有细胞标记物相比,本发明提供的光致发光柠檬酸基纳米粒具有以下优点:

(1)具有优异的光致发光性能,在360~480nm波段都可激发荧光成像,荧光量子产率高达15%;

(2)光稳定性能佳,在磷酸盐缓冲液和完全细胞培养基(dmem+10%胎牛血清)中浸泡三十天后,其荧光发射光谱未发生明显改变,且发光亮度高;

(3)该纳米粒子具有良好的生物相容性,且有利于细胞的黏附和增殖;

(4)光致发光柠檬酸基纳米粒可长期实时标记干细胞和肿瘤细胞,在体外标记时间长达14天,远远高于商用细胞标记物;

(5)制备过程简单,可工业进行生产。

附图说明

图1所示的为实施例1所制备的纳米粒子的性能表征结果,其中a为透射电镜图,b为在溶液中静置前后的表观图,c和d分别为粒径图和水合粒径图。

图2所示的为实施例1所制备的纳米粒子的光致发光性能检测结果,其中a为光致发光柠檬酸基纳米粒在dpbs中的光致发光光谱图,b为荧光发射光谱图,c为激光照射60分钟后的荧光强度变化图,d为纳米粒在dpbs中浸泡30天前后的荧光发射光谱图,e为纳米粒在dmem+fbs中浸泡30天前后的荧光发射光谱图,f和g分别为纳米粒在dmem+dfbs中浸泡30天前后的蓝色荧光图。

图3所示的为脂肪干细胞与光致发光柠檬酸基纳米粒共培养后的活死染色(a)及细胞荧光强度图(b),与对照组相比,纳米粒子的加入并未影响脂肪干细胞的活性和增殖情况,表明所提供的纳米粒子具有良好的生物相容性。

图4所示为光致发光柠檬酸基纳米粒标记细胞增殖成像图。a表示脂肪干细胞被纳米粒标记后的激光共聚焦成像图,b表示细胞数量数据图,c表示细胞荧光强度图。图示可见脂肪干细胞被纳米粒子标记并发出蓝色荧光,纳米粒子主要分布在细胞质中,且经过四天的培养细胞数量显著增加,荧光强度也增加。

图5所示为光致发光柠檬酸基纳米粒在连续一小时的激光照射下的发光情况图,pcsnps为光致发光柠檬酸基纳米粒,ctgreen为商用细胞标记材料。图可见纳米粒子依然发出强的蓝色荧光,可清楚的标记脂肪干细胞的形貌,而商用的细胞标记产品在激光照射20分钟后荧光便淬灭,表明所制备的纳米粒在标记细胞时具备优异的光稳定性能。

图6所示为光致发光柠檬酸基纳米粒长期标记脂肪干细胞的成像图。纳米粒在与细胞在共培养30分钟(day0)后,即可清晰地标记脂肪干细胞,且在培养14天后,还可见细胞被稳定的蓝色荧光所标记,而对照的商用细胞标记物(ctgreen和ctblue)在培养4天后荧光即消失,说明所制备的纳米粒子具备优异的光致发光性能及光稳定性能,能够长期稳定地标记脂肪干细胞,并可稳定地标记下一代的细胞。

图7所示的为人肝癌细胞与光致发光柠檬酸基纳米粒共培养后的活死染色(a)及细胞荧光强度图(b),与对照组相比,纳米粒子的加入并未影响人肝癌细胞的活性和增殖情况,表明所提供的纳米粒子具有良好的生物相容性。

图8所示为光致发光柠檬酸基纳米粒长期标记人肝癌细胞的成像图。纳米粒在与细胞在共培养30分钟(day0)后,即可清晰地标记脂肪干细胞,且在培养14天后,还可见细胞被稳定的蓝色荧光所标记,而对照的商用细胞标记物(ctgreen和ctblue)在培养4天后荧光即消失,说明所制备的纳米粒子具备优异的光致发光性能及光稳定性能,能够长期稳定地标记人肝癌细胞,并可稳定地标记下一代的细胞。

具体实施方式

实施例1光致发光柠檬酸基纳米粒的制备

(1)制备聚(柠檬酸-硅氧烷)高分子材料:将1,8-辛二醇、柠檬酸、3-氨基丙基三乙氧基硅烷按摩尔比1:1:0.4加入50ml烧瓶并置于油浴锅中,在搅拌下将烧瓶加热至160°c,待溶解后再在140°c下反应一小时,得到聚合物,整个过程在氮气保护下进行,将聚合物用去离子水清洗三遍,并将其冷冻-干燥48h,得到聚(柠檬酸-硅氧烷)高分子材料;

(2)将200mg步骤(1)得到的聚(柠檬酸-硅氧烷)高分子材料加入10ml二甲基亚砜中,室温下用磁力搅拌器搅拌30分钟溶解;

(3)将步骤(2)中的聚(柠檬酸-硅氧烷)溶液逐滴加入50ml1%聚乙烯醇溶液中,搅拌速度为150rpm;

(4)将步骤(2)得到的溶液在10000rpm下离心30分钟,将离心后的沉淀物用去离子水洗涤3次并置于-80°c的冷冻干燥机中冷冻干燥24小时,得到所述的光致发光柠檬酸基纳米粒子。

实施例2光致发光柠檬酸基纳米粒的制备

(1)制备聚(柠檬酸-硅氧烷)高分子材料:将1,8-辛二醇、柠檬酸、3-氨基丙基三乙氧基硅烷按摩尔比1.1:1:0.5加入50ml烧瓶并置于油浴锅中,在搅拌下将烧瓶加热至160°c,待溶解后再在140°c下反应一小时,得到聚合物,整个过程在氮气保护下进行,将聚合物用去离子水清洗三遍,并将其冷冻-干燥48h,得到聚(柠檬酸-硅氧烷)高分子材料;

(2)将100mg步骤(1)得到的聚(柠檬酸-硅氧烷)高分子材料加入10ml二甲基亚砜中,室温下用磁力搅拌器搅拌30分钟溶解;

(3)将步骤(2)中的聚(柠檬酸-硅氧烷)溶液逐滴加入50ml1.5%聚乙烯醇溶液中,搅拌速度为150rpm;

(4)将步骤(2)得到的溶液在10000rpm下离心30分钟,将离心后的沉淀物用去离子水洗涤3次并置于-80°c的冷冻干燥机中冷冻干燥24小时,得到所述的光致发光柠檬酸基纳米粒子。

实施例3光致发光柠檬酸基纳米粒的制备

(1)制备聚(柠檬酸-硅氧烷)高分子材料:将1,8-辛二醇、柠檬酸、3-氨基丙基三乙氧基硅烷按摩尔比0.9:1:0.2加入50ml烧瓶并置于油浴锅中,在搅拌下将烧瓶加热至160°c,待溶解后再在140°c下反应一小时,得到聚合物,整个过程在氮气保护下进行,将聚合物用去离子水清洗三遍,并将其冷冻-干燥48h,得到聚(柠檬酸-硅氧烷)高分子材料;

(2)将300mg步骤(1)得到的聚(柠檬酸-硅氧烷)高分子材料加入10ml二甲基亚砜中,室温下用磁力搅拌器搅拌30分钟溶解;

(3)将步骤(2)中的聚(柠檬酸-硅氧烷)溶液逐滴加入50ml0.5%聚乙烯醇溶液中,搅拌速度为150rpm;

(4)将步骤(2)得到的溶液在10000rpm下离心30分钟,将离心后的沉淀物用去离子水洗涤3次并置于-80℃的冷冻干燥机中冷冻干燥24小时,得到所述的光致发光柠檬酸基纳米粒子。

对上述实施例所制备的纳米粒子进行性能检测:采用马尔文激光粒度仪和zeta电位仪测定样品的粒径及zeta电势,采用透射电子显微镜观察样品的形貌及分散情况,纳米粒子的分散性通过将其浸泡在磷酸盐缓冲液及完全细胞培养基(dmem+10%胎牛血清)中三十天后分析得出,光致发光量子产率通过荧光光谱仪测定。

图1所示的为实施例1所制备的纳米粒子的性能表征结果,电镜图片显示上述合成的光致发光柠檬酸基纳米粒子呈现出单分散、粒度均一的球形形貌,无颗粒团聚现场出现;该纳米粒径的平均值120nm,水合动力学粒径为127nm,zeta电位为8mv;在室温下磷酸盐缓冲液和完全细胞培养基中放置三十天后无沉淀物出现,说明所制备的纳米粒子具有良好的分散性和稳定性。

图2所示的为实施例1所制备的纳米粒子的光致发光性能检测结果,光致发光柠檬酸基纳米粒子也表现出优异的光致发光性能,其激发和发射波长为360nm和465nm,在360~480nm波段都可激发荧光成像,且其荧光量子产率高达至15%;纳米粒子经激发光连续照射一小时后,其荧光强度只有轻微的降低,显示其良好的光稳定性;在室温下磷酸盐缓冲液和完全细胞培养基中放置三十天后,其荧光发射光谱并未发生明显变化,并且发光亮度仍然很高。

综上所述,利用油/水乳化法合成的光致发光柠檬酸基纳米粒子粒径均一、分散性好,在水溶液中具有良好的稳定性,且其光致发光性能优异、光稳定性强,更适用于长期细胞标记和示踪。

实施例4光致发光柠檬酸基纳米粒在标记脂肪干细胞或人肝癌细胞中的应用

将人脂肪干细胞或人肝癌细胞以5.0×103个/ml的密度接种于细胞培养专用盖玻片上,加入含10%胎牛血清的dmem培养基于培养箱中培养12小时,然后将培养基更换为含100μg/ml纳米粒的新鲜培养基,继续孵育6小时,即可实现对脂肪干细胞或人肝癌细胞的荧光标记。

实施例5光致发光柠檬酸基纳米粒在标记脂肪干细胞或人肝癌细胞中的应用

将人脂肪干细胞或人肝癌细胞以5.0×103个/ml的密度接种于细胞培养专用盖玻片上,加入含10%胎牛血清的dmem培养基于培养箱中培养12小时,然后将培养基更换为含30μg/ml纳米粒的新鲜培养基,继续孵育0.5小时,即可实现对脂肪干细胞或人肝癌细胞的荧光标记。

实施例6光致发光柠檬酸基纳米粒在标记脂肪干细胞或人肝癌细胞中的应用

将人脂肪干细胞或人肝癌细胞以5.0×103个/ml的密度接种于细胞培养专用盖玻片上,加入含10%胎牛血清的dmem培养基于培养箱中培养12小时,然后将培养基更换为含30μg/ml纳米粒的新鲜培养基,继续孵育24小时,即可实现对脂肪干细胞或人肝癌细胞的荧光标记。

实施例7光致发光柠檬酸基纳米粒在标记脂肪干细胞或人肝癌细胞中的应用

将人脂肪干细胞或人肝癌细胞以5.0×103个/ml的密度接种于细胞培养专用盖玻片上,加入含10%胎牛血清的dmem培养基于培养箱中培养12小时,然后将培养基更换为含300μg/ml纳米粒的新鲜培养基,继续孵育24小时,即可实现对脂肪干细胞或人肝癌细胞的荧光标记。

实施例8光致发光柠檬酸基纳米粒在标记脂肪干细胞或人肝癌细胞中的应用

将人脂肪干细胞或人肝癌细胞以5.0×104个/ml的密度接种于细胞培养专用盖玻片上,加入含10%胎牛血清的dmem培养基于培养箱中培养12小时,然后将培养基更换为含300μg/ml纳米粒的新鲜培养基,继续孵育0.5小时,即可实现对脂肪干细胞或人肝癌细胞的荧光标记。

下面以实施例4所示的细胞标记参数对实施例1所制备的光致发光柠檬酸基纳米粒在标记脂肪干细胞的效果进行检测,其他实施例的测试效果与实施例4的效果类似,不一一说明。

(1)光致发光柠檬酸基纳米粒的细胞相容性

将原代人脂肪干细胞admscs接种于含10%胎牛血清的dmem培养基中,置于37°c含5%co2浓度的细胞培养箱中培养,培养基每隔3天更换一次,待细胞融合至80%左右,使用0.25%胰酶-edta进行传代,所使用的细胞为3~5代以内的细胞。为检测实施例1所述的光致发光柠檬酸基纳米粒子的细胞相容性,将脂肪干细胞admscs接种培养12小时后,加入含不同浓度的纳米粒子的dmem培养基与细胞进行共培养,并通过活死染色、阿尔玛蓝试剂盒检测人脂肪干细胞的活性与增殖情况。

结果如图3所示,通过活死染色及荧光强度分析,与对照组相比,纳米粒子的加入并未影响脂肪干细胞的活性和增殖情况,表明所提供的股柠檬酸硅氧烷纳米粒子具有良好的生物相容性。

(2)光致发光柠檬酸基纳米粒在标记脂肪干细胞中的应用

将人脂肪干细胞以5.0×103个/ml的密度接种于细胞培养专用盖玻片上,加入含10%胎牛血清的dmem培养基于培养箱中培养12小时,然后将培养基更换为含100μg/ml纳米粒的新鲜培养基,继续孵育6小时。

使用dmem培养基培养4天后,将细胞用多聚甲醛固定,并用碘化丙啶对细胞核进行染色,在激光共聚焦显微镜下观察标记后细胞的成像情况。结果如图4所示,脂肪干细胞被纳米粒子标记并发出蓝色荧光,纳米粒子主要分布在细胞质中,且经过四天的培养细胞数量显著增加,荧光强度也增加。该实验结果表明,所制备的纳米粒在细胞内于激发光的照射下可发出蓝色荧光,成功地对脂肪干细胞进行了标记,并可实时示踪细胞的增殖情况。

同时,对所制备的纳米粒子的光稳定性能进行了测定。在纳米粒与细胞孵育6小时后,使用激光共聚焦显微镜在一小时内连续观察细胞标记及成像情况。结果如图5所示,在连续一小时的激光照射下,纳米粒子依然发出强的蓝色荧光,可清楚的标记脂肪干细胞的形貌,而商用的细胞标记产品在激光照射20分钟后荧光便淬灭,表明所制备的纳米粒在标记细胞时具备优异的光稳定性能。

此外,对该纳米粒子长期标记细胞的能力进行了检测。在纳米粒与细胞孵育24小时后,使用常规dmem培养基对细胞连续培养14天,期间细胞完全融合后传代继续培养。结果如图6所示,纳米粒在与细胞在共培养30分钟(day0)后,即可清晰地标记脂肪干细胞,且在培养14天后,还可见细胞被稳定的蓝色荧光所标记,而对照的商用细胞标记物在培养4天后荧光即消失,说明所制备的纳米粒子说明所制备的纳米粒子具备优异的光致发光性能及光稳定性能,能够长期稳定地标记脂肪干细胞,并可稳定地标记下一代的细胞。

下面以实施例4所示的细胞标记参数对实施例1所制备的光致发光柠檬酸基纳米粒在标记脂肪干细胞的效果进行检测,其他实施例的测试效果与实施例4的效果类似,不一一说明。

(1)光致发光柠檬酸基纳米粒对人肝癌细胞的细胞相容性

将人肝癌细胞hepg2接种于含10%胎牛血清的dmem培养基中,置于37°c含5%co2浓度的细胞培养箱中培养,培养基每隔3天更换一次,待细胞融合至80%左右,使用0.25%胰酶-edta进行传代,所使用的细胞为3~5代以内的细胞。为检测实施例1所述的光致发光柠檬酸基纳米粒子的细胞相容性,将人肝癌细胞hepg2细胞接种培养12小时后,加入含不同浓度的纳米粒子的dmem培养基与细胞进行共培养,并通过活死染色、阿尔玛蓝试剂盒检测人肝癌细胞的活性与增殖情况。

结果如图7所示,通过活死染色及荧光强度分析,与对照组相比,纳米粒子的加入并未影响人肝癌细胞的活性和增殖情况,表明所提供的股柠檬酸硅氧烷纳米粒子具有良好的生物相容性。

(2)光致发光柠檬酸基纳米粒在标记人肝癌细胞中的应用

将人肝癌细胞以5.0×103个/ml的密度接种于细胞培养专用盖玻片上,加入含10%胎牛血清的dmem培养基于培养箱中培养12小时,然后将培养基更换为含100μg/ml纳米粒的新鲜培养基,继续与细胞孵育24小时后,使用常规dmem培养基对细胞连续培养14天,期间细胞完全融合后传代继续培养。

结果如图8所示,纳米粒在与细胞在共培养30分钟(day0)后,即可清晰地标记人肝癌细胞,且在培养14天后,还可见细胞被稳定的蓝色荧光所标记,而对照的商用细胞标记物在培养4天后荧光即消失,说明所制备的纳米粒子具备优异的光致发光性能及光稳定性能,能够长期稳定地标记人肝癌细胞,并可稳定地标记下一代的细胞。

以上所述仅为本发明的实施例,并非用来限制本发明的保护范围;本发明的保护范围由权利要求书中的权利要求限定,并且凡是依发明所作的等效变化与修改,都在本发明专利的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1