本发明涉及太赫兹探测器技术领域,更具体的说,是涉及一种基于周期性光栅化栅极金属栅mosfet太赫兹探测器。
背景技术:
太赫兹波是电磁波谱上介于微波与红外光之间的电磁波,其频率在0.1~10thz左右,波长对应3mm~30μm。太赫兹技术是目前信息科学技术研究的前沿与热点领域之一,近几年来,受到世界各国研究机构的广泛关注。美、日、欧等发达国家先后将太赫兹技术评定为“改变未来世界的十大技术”和“国家支柱技术十大重点战略目标”,投入巨资来夯实在太赫兹领域的国际地位。太赫兹具备广泛的应用前景,在天体物理学、材料科学、生物医学、环境科学、光谱与成像技术、信息科学技术等领域有着广泛的技术应用。太赫兹技术能够显著提升我国在航空航天、空间通信、生物医疗、甚至是食品检测等方面的实力。而作为太赫兹应用基础的太赫兹探测器是太赫兹安防、检测的关键部件。
在太赫兹频段由于任何导体引线都会带来极其严重的寄生效应,使得绝大多数基于iii-v/ii-vi族工艺的探测器性能难以控制,甚至出现不工作的情况,从而制约了这类太赫兹探测器的实用化。发展基于cmos兼容工艺的室温太赫兹探测器是太赫兹探测和阵列成像实现低成本、大规模推广的基础。而目前现有的基于cmos兼容工艺的探测器普遍存在响应速度慢、灵敏度低、价格昂贵、通常需要在低温下工作等诸多缺点,这在很大程度上限制了太赫兹技术的集成应用和发展。因此发展具有高响应度、高灵敏度、价格低廉的cmos兼容的室温太赫兹探测器成为了太赫兹技术集成应用和发展进程中迫切需要解决的问题。
技术实现要素:
本发明提供一种基于周期性光栅化栅极金属栅mosfet太赫兹探测器,通过调节栅极的光栅化结构参数(光栅的宽度、长度、区域面积、周期和图案形式)来实现thz响应波段范围的调节,从而提高探测器的探测灵敏度;通过光刻、纳米压印和人工微结构材料的调控引入周期可调且具有各种不同图案形式的光栅结构替代原有mosfet的金属栅,实现由cmos兼容的低维半导体材料(如纳米线)制备的金属栅极光栅化,使栅极与太赫兹波产生共振,增强等离子体谐振效应,从而提高探测器的响应速度。
本发明的目的是通过以下技术方案实现的。
本发明基于周期性光栅化栅极金属栅mosfet太赫兹探测器,包括具有周期性光栅化栅极及其各种不同图案形式的金属栅mosfet、低噪声前置放大器和电压反馈回路;
所述金属栅mosfet的栅极用于接收太赫兹信号,所述金属栅mosfet的栅极经一号偏置电阻连接一号偏置电压源,所述金属栅mosfet的源极接地,所述金属栅mosfet的漏极和低噪声前置放大器的正向输入端之间连接有一号隔直电容;所述低噪声前置放大器的正向输入端经二号偏置电阻连接二号偏置电压源;
所述电压反馈回路包括反馈电阻、接地电阻、二号隔直电容和三号隔直电容,所述反馈电阻连接于低噪声前置放大器的输出端和反向输入端之间,所述接地电阻一端连接低噪声前置放大器的反向输入端,另一端经二号隔直电容接地,所述三号隔直电容一端连接低噪声前置放大器的输出端,另一端接地。
所述一号偏置电压源和一号偏置电阻用于给金属栅mosfet提供直流供电,通过调节金属栅mosfet栅极的光栅化结构参数(光栅的宽度、长度、区域面积、周期和图案形式)来实现thz响应波段范围的调节。
与现有技术相比,本发明的技术方案所带来的有益效果是:
(1)本发明基于硅基cmos工艺,便于与后端电路集成,易于实现大规模量产,进而缩减探测器成本。
(2)本发明可通过调节栅极的光栅化结构参数(光栅的宽度、长度、区域面积、周期和图案形式)来实现thz响应波段范围的调节,从而提高太赫兹探测的灵敏度,实现窄带(甚至点频)太赫兹探测。
(3)本发明采用光栅化金属栅极的方法可降低空间中微弱的太赫兹信号与栅上金属结构激发出来的plasmonic在传播过程中的扩散和损耗问题。
(4)本发明在沟道中形成类光栅化的沟道,实现衬底中plasmon与栅极plasmonic间的共振增强,提升探测效率。
(5)本发明无须使用天线,可有效避免片上天线损耗大、增益和辐射效率低、通过drc设计规则验证难度大等问题;芯片面积大大减小,极大地降低了生产成本。
(6)本发明可利用光栅对光的谐振原理等调控作用,使光栅化的金属栅极与太赫兹波产生共振,从而提高光电转换效率。
附图说明
图1是两种具有周期性光栅化栅极结构及不同光栅图案形式的金属栅mosfet示意图;
图2是基于周期性光栅化栅极金属栅mosfet太赫兹探测器电路图。
附图标记:vb1一号偏置电压源,vb2二号偏置电压源,rb1一号偏置电阻,rb2二号偏置电阻,c1一号隔直电容,c2二号隔直电容,c3三号隔直电容,q1金属栅mosfet,q2低噪声前置放大器,rf反馈电阻,rg接地电阻,gnd地。
具体实施方式
下面结合附图对本发明作进一步的描述。
本发明基于周期性光栅化栅极金属栅mosfet太赫兹探测器,如图1和图2所示,包括具有周期性光栅化栅极及其各种不同图案形式的金属栅mosfetq1、低噪声前置放大器q2和电压反馈回路。
所述金属栅mosfetq1的栅极grating-gate用于接收太赫兹信号。所述金属栅mosfetq1的栅极grating-gate经一号偏置电阻rb1连接加载有一号偏置电压源vb1,用于给金属栅mosfetq1提供直流供电,可以通过调节金属栅mosfetq1栅极grating-gate的光栅化结构参数(光栅的宽度、长度、区域面积、周期和图案形式)来实现thz响应波段范围的调节,从而提高探测器的探测灵敏度。其中,一号偏置电压源vb1为固定直流偏置电压源。
所述金属栅mosfetq1的源极s接地gnd,所述金属栅mosfetq1的漏极d和低噪声前置放大器q2的正向输入端之间连接有一号隔直电容c1。所述低噪声前置放大器q2的正向输入端经二号偏置电阻rb2还连接二号偏置电压源vb2。其中,二号偏置电阻rb2和二号偏置电压源vb2用于给低噪声前置放大器q2供电;二号偏置电压源vb2为固定直流偏置电压源。
所述电压反馈回路主要由反馈电阻rf、接地电阻rg、二号隔直电容c2和三号隔直电容c3组成。所述反馈电阻rf连接于低噪声前置放大器q2的输出端和反向输入端之间,所述接地电阻rg一端连接低噪声前置放大器q2的反向输入端,另一端经二号隔直电容c2接地gnd,所述三号隔直电容c3一端连接低噪声前置放大器q2的输出端,另一端接地gnd。其中,通过改变反馈电阻rf和接地电阻rg的阻值可以实现低噪声前置放大器q2增益的调节。
本发明基于周期性光栅化栅极金属栅mosfet太赫兹探测器的输出电压信号为直流电压信号,该直流电压信号的大小与太赫兹信号的辐射强度成正比,根据本发明太赫兹探测器输出电压信号的大小可以得到入射太赫兹信号的强度信息,从而实现太赫兹探测。
尽管上面结合附图对本发明的功能及工作过程进行了描述,但本发明并不局限于上述的具体功能和工作过程,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可以做出很多形式,这些均属于本发明的保护之内。