片材间隙检测装置、片材间隙检测方法以及片材熔接方法与流程

文档序号:21604728发布日期:2020-07-24 17:01阅读:207来源:国知局
片材间隙检测装置、片材间隙检测方法以及片材熔接方法与流程

本公开涉及一种片材间隙检测装置、片材间隙检测方法以及片材熔接方法。

本申请要求2017年12月5日在日本申请的日本特愿2017-233606号的优先权,并将其内容援引于此。



背景技术:

就将碳纤维、玻璃纤维用作强化纤维的纤维强化塑料片材(frp片材)而言,因为轻量且具有高的耐久性,所以用作构成汽车、飞机等的各种结构部件。这样的frp片材虽然在其纤维方向上拉伸强度、韧性非常高,但在与纤维方向正交的方向上拉伸强度、韧性低。以往已知一种方法及装置,其为了缓和这样的frp片材的各向异性,使frp片材的纤维方向不同而层叠多张(例如参照专利文献1)。

现有技术文献

专利文献

专利文献1:国际公开第2015/152325号



技术实现要素:

发明所要解决的课题

在上述现有技術中,为了层叠纤维方向不同的frp片材,从纤维角度为0°的frp片材的生料裁切任意的纤维方向的frp片材,通过熔接将这种裁切的frp片材在前后方向上接合。此时,配置光学式的间隙检测传感器,管理frp片材的后端与前端之间的间隙的大小,以使前方侧的frp片材的后端与后方侧的frp片材的前端不重叠。但是,frp片材的前端、后端有时下垂,或纤维起毛等,间隙的检测精度可能产生偏差。

本公开鉴于上述问题点而提出,其目的在于提高frp片材的前后的间隙的检测精度。

用于解决课题的方案

为了解决上述的课题,本公开的第一方案的片材间隙检测装置在纤维强化塑料片材的输送路径中检测先行的第一纤维强化塑料片材的后端与后续的第二纤维强化塑料片材的前端之间的间隙,其中,具有:光检测传感器,其将检测光投射到包括上述第一纤维强化塑料片材的后端、上述第二纤维强化塑料片材的前端及从上述间隙露出的基准面的区域,并接收其反射光;以及衬垫,其在至少包括投射上述检测光的投光区域的区域,以从上述基准面分离的状态支撑上述第一纤维强化塑料片材的后端与上述第二纤维强化塑料片材的前端。

另外,在本公开的上述第一方案的片材间隙检测装置中,也可以是,上述衬垫具有:第一支撑区域,其支撑上述第一纤维强化塑料片材;第二支撑区域,其支撑上述第二纤维强化塑料片材;以及台阶区域,其形成于上述第一支撑区域与上述第二支撑区域之间。

另外,在本公开的上述第一方案的片材间隙检测装置中,也可以是,上述台阶区域未延伸至上述衬垫的端缘。

另外,在本公开的上述第一方案的片材间隙检测装置中,也可以是,上述台阶区域是具有底部的槽,在上述底部配设有形成上述基准面的正反射抑制部件。

另外也可以是,本公开的上述第一方案的片材间隙检测装置具有使上述衬垫从上述投光区域后退的移动装置,上述衬垫的后端部形成为比上述衬垫的前端部隆起。

另外,本公开的第二方案的片材间隙检测方法在纤维强化塑料片材的输送路径中检测先行的第一纤维强化塑料片材的后端与后续的第二纤维强化塑料片材的前端之间的间隙,其中,具有以下步骤:衬垫配置步骤,以使上述第一纤维强化塑料片材的后端与上述第二纤维强化塑料片材的前端从基准面分离的状态配置衬垫;以及光检测步骤,在上述衬垫配置步骤之后,将检测光投射到包括上述第一纤维强化塑料片材的后端、上述第二纤维强化塑料片材的前端及从上述间隙露出的上述基准面的区域,并接收器反射光を接收。

另外,在本公开的上述第二方案的片材间隙检测方法中,也可以是,上述第一纤维强化塑料片材及上述第二纤维强化塑料片材的强化纤维的取向方向与上述间隙平行。

另外,在本公开的上述第二方案的片材间隙检测方法中,也可以是,上述衬垫具有:第一支撑区域,其支撑上述第一纤维强化塑料片材;第二支撑区域,其支撑上述第二纤维强化塑料片材;以及台阶区域,其形成于上述第一支撑区域与上述第二支撑区域之间,上述衬垫配置步骤具有:第一步骤,使上述第一纤维强化塑料片材支撑于上述第一支撑区域,将上述第一纤维强化塑料片材的后端配置于上述台阶区域之上;以及第二步骤,使上述第二纤维强化塑料片材支撑于上述第二支撑区域,将上述第二纤维强化塑料片材的前端与上述第一纤维强化塑料片材的后端分离的方式配置于上述台阶区域之上。

另外,本公开的第三方案的片材熔接方法基于上述第二方案的片材间隙检测方法来检测上述间隙,并对上述第一纤维强化塑料片材的后端与上述第二纤维强化塑料片材的前端之间进行熔接,其中,具有以下步骤:片材位置修正步骤,在上述光检测步骤之后,对上述第二纤维强化塑料片材相对于上述第一纤维强化塑料片材的位置进行修正;片材定位步骤,在上述片材位置修正步骤之后,按压上述第一纤维强化塑料片材的后端以外的后端部,并且按压上述第二纤维强化塑料片材的前端以外的前端部;片材熔接步骤,在上述片材定位步之后,对上述第一纤维强化塑料片材的后端与上述第二纤维强化塑料片材的前端之间进行熔接。

发明效果

根据本公开,能够提高frp片材的前后的间隙的检测精度。

附图说明

图1是示意性地表示本公开的frp片材层叠装置的俯视图。

图2是示意性地表示本公开的frp片材层叠装置的侧视图。

图3是示意性地表示利用本公开的frp片材层叠装置形成的frp片材层叠物的分解立体图。

图4是示意性地表示本公开的切断装置的立体图。

图5是示意性地表示本公开的frp片材的配置的俯视图。

图6是从片材流动方向观察本公开的片材间隙检测装置及熔接装置的主视图。

图7是示意性地表示本公开的光检测传感器的位置及衬垫的形状的俯视图。

图8是从片材流动方向观察本公开的熔接装置进行熔接时的片材间隙检测装置的主视图。

图9a是示意性地表示本公开的片材间隙检测装置的动作~熔接装置的动作的侧视图。

图9b是示意性地表示本公开的片材间隙检测装置的动作~熔接装置的动作的侧视图。

图9c是示意性地表示本公开的片材间隙检测装置的动作~熔接装置的动作的侧视图。

图10a是示意性地表示本公开的片材间隙检测装置的动作~熔接装置的动作的侧视图。

图10b是示意性地表示本公开的片材间隙检测装置的动作~熔接装置的动作的侧视图。

图11a是示意性地表示本公开的片材间隙检测装置的动作~熔接装置的动作的侧视图。

图11b是示意性地表示本公开的片材间隙检测装置的动作~熔接装置的动作的侧视图。

图12是示意性地表示本公开的变形例的衬垫的侧面剖视图。

具体实施方式

以下,参照附图对片材间隙检测装置、片材间隙检测方法以及片材熔接方法进行说明。此外,在以下的说明中,将“纤维强化塑料片材”简称为“frp片材”。

图1是示意性地表示本公开的frp片材层叠装置1的俯视图。图2是示意性地表示本公开的frp片材层叠装置1的侧视图。

frp片材层叠装置1是一边输送frp片材一边层叠多个frp片材的输送系统。该frp片材层叠装置1具备:从卷成卷状的状态抽出frp片材生料p1的抽出装置2;使从该抽出装置2抽出的frp片材生料p1行进的主输送路径3;以及将在主输送路径3上行进的frp片材层叠物p5拉入,而且送到下游侧的送料装置4。

此外,有时将主输送路径3中的frp片材生料p1的输送方向的下游侧称为前侧,将上游侧称为后侧。

图3是示意性地表示由本公开的frp片材层叠装置1形成的frp片材层叠物p5的分解立体图。

如图3所示,frp片材层叠物p5具有在frp片材生料p1上依次层叠有frp片材p2、frp片材生料p3、frp片材p4的结构。

此外,在与frp片材生料p1、frp片材层叠物p5的板面垂直的方向上,有时将设有frp片材p4的一侧称为上侧,将设有frp片材生料p1的一侧称为下侧。

就frp片材生料p1而言,碳纤维、玻璃纤维等强化纤维含浸于例如热塑性树脂中而形成为50~300μm左右的厚度。就该frp片材生料p1而言,强化纤维f(强化纤维f的长边方向)沿一定方向对齐。frp片材生料p1形成为其强化纤维f的取向方向(强化纤维f的长度方向)与frp片材生料p1的长度方向大致一致。将该强化纤维f的取向方向设为0°。

如图1所示,frp片材层叠装置1具备形成frp片材p2的第一frp片材形成部5和形成frp片材p4的第二frp片材形成部14。另外,frp片材层叠装置1具备在前后配置的frp片材p2之间进行熔接的熔接装置11和在前后配置的frp片材p4之间进行熔接的熔接装置20。在熔接装置11、20设有后述的片材间隙检测装置10、19。

如图2所示,抽出装置2构成为,具有辊,从卷成卷状的状态将frp片材生料p1沿其长度方向抽出并在主输送路径3上送出。如图1所示,主输送路径3是设置成具有比frp片材生料p1的宽度宽的宽度的直线状(直板状)的支撑台。主输送路径3的上表面(支撑面)形成为摩擦阻力少的平滑面,以使frp片材生料p1能够顺畅地行进。

送料装置4具有如图2所示地上下配置的一对辊4a和如图1所示地与一对辊4a中任一方连接的马达等驱动源4b。送料装置4将在主输送路径3上行进来的frp片材层叠物p5夹持于一对辊4a之间,通过基于驱动源4b的辊4a的旋转而将frp片材层叠物p5拉入,并送到下游侧。

如图1所示,第一frp片材形成部5设于主输送路径3的上游侧。第一frp片材形成部5具备:从卷成卷状的状态将frp片材生料p1送出的送出装置6;使从送出装置6送出的frp片材生料p1行进的副输送路径7;以及以预先设定的角度将在副输送路径7上行进来的frp片材生料p1沿其宽度方向切断的切断装置8。从送出装置6送出的frp片材生料p1与由上述的抽出装置2抽出到主输送路径3上的frp片材生料p1相同,强化纤维f的取向方向为0°。

送出装置6具备:从卷成卷状的状态抽出frp片材生料p1的抽出装置6a;以及将由抽出装置6a抽出的frp片材生料p1在副输送路径7上传送的送料装置6b。抽出装置6a为与上述的抽出装置2相同的结构,构成为从卷成卷状的状态将frp片材生料p1沿其长度方向抽出,并且在副输送路径7上送出。

送料装置6b形成为与上述的送料装置4相同,具有上下配置的一对辊6c和与一对辊6c中任一方连接的马达等驱动源6d。该送料装置6b将从抽出装置6a抽出的frp片材生料p1夹持于一对辊6c之间,通过基于驱动源6d的辊6c的旋转而将frp片材生料p1拉入,并送到副输送路径7的下游侧。

副输送路径7配置于主输送路径3的一方的侧方。该副输送路径7以与主输送路径3正交的方式延伸。副输送路径7也是支撑台,其与主输送路径3相同地设置成具有比frp片材生料p1的宽度宽的宽度的直线状(直板状)。副输送路径7的上表面(支撑面)形成为摩擦阻力少的平滑面,以使frp片材生料p1能够顺畅地行进。

图4是示意性地表示本公开的切断装置8的立体图。

如图4所示,切断装置8以预先设定的角度将在副输送路径7上行进来的frp片材生料p1沿其宽度方向切断(裁切)。切断装置8具备刀具8a、可移动地保持刀具8a的保持杆8b、以及支撑保持杆8b的两端部的一对支撑部8c。

刀具8a构成为利用马达等驱动单元沿保持杆8b的长度方向往复移动。刀具8a通过在去程移动而切断frp片材生料p1,通过在回程移动回到初始位置,为新的切断而待机。

保持杆8b具有细长的棱柱状,其形成为例如比frp片材生料p1的宽度足够长的长度。该保持杆8b构成为沿其长度方向引导刀具8a。保持杆8b以在frp片材生料p1的宽度方向上横渡的方式配置于frp片材生料p1的上方。此外,保持杆8b不限于棱柱状。

一对支撑部8c以将保持杆8b设为相对于其frp片材生料p1的角度为预先设定的角度的方式可移动地支撑保持杆8b的两端部。在本公开中,以保持杆8b相对于frp片材生料p1的取向方向,即frp片材生料p1的长度方向呈45°(-45°)交叉的方式支撑杆该保持杆8b。

刀具8a沿保持杆8b的长度方向移动,从而刀具8a将frp片材生料p1以45°(-45°)的角度沿其宽度方向切断。在此,-45°的符号“-”表示强化纤维f的取向方向如图3所示顺时针变换。因此,在逆时针变换的情况下,用“+”符号表示。

另外,如图4所示,一对支撑部8c构成为可以将保持杆8b相对于frp片材生料p1的角度变为任意的角度。即,保持杆8b构成为其两端部分别相对于直接支撑保持杆8b的支撑杆8d,沿支撑杆8d的长度方向的相反方向移动。

这样,在本公开中,相对于frp片材生料p1的长度方向(强化纤维f的取向方向)的角度为可变的。因此,切断装置8也能够取代例如以“+45°”设定frp片材生料p1的切断角度,例如以“+30°”、“+60°”进行切断。而且,也能够以“-45°”等进行切断。

此外,切断装置8由未图示的控制装置以刀具8a的驱动与送出装置6的送料装置6b的动作连动的方式进行控制。即,在基于送料装置6b的frp片材生料p1的送料动作暂时停止期间,驱动刀具8a以预先设定的角度将frp片材生料p1切断,形成图3所示的平行四边形的frp片材p2。此外,在图3中,符号l1所示的边的长度为frp片材生料p1的宽度的√2倍的长度。

如图1所示,在切断装置8的下游侧设有将frp片材p2载置于在主输送路径3上行进的frp片材生料p1上的输送装置9。如图2所示,输送装置9具备吸附保持frp片材p2的保持部9a和使该保持部9a在水平面上旋转,且将frp片材p2的强化纤维f的朝向设为预先设定的朝向的移动部9b。

保持部9a构成为通过后述的吸附而可装拆地保持frp片材p2。移动部9b由机械臂形成,构成为具有多个转动轴且使保持部9a沿水平方向的xy方向移动,并且围绕轴旋转,且使保持部9a升降。

基于这样的结构,输送装置9由保持部9a保持用切断装置8切出的平行四边形的frp片材p2,由移动部9b将保持的frp片材p2移动到主输送路径3上,之后,从保持部9a脱除,由此,将frp片材p2载置于frp片材生料p1上。

如图3所示,移动部9b以frp片材p2的强化纤维f的取向方向成为预先设定的朝向的方式,即以成为与frp片材生料p1的强化纤维f的取向方向不同的角度即+45°的方式,使frp片材p2旋转并载置于frp片材生料p1上。此外,在载置frp片材p2时,以该frp片材p2的切断边l2分别位于frp片材生料p1的侧端缘上的方式对位。

如图1及图2所示,在主输送路径3设有熔接装置11。熔接装置11对载置于frp片材生料p1上的frp片材p2的前后的间隙和其附近进行加热。例如,能够将超声波熔接机用作熔接装置11。熔接装置11熔化frp片材p2及其之下的frp片材生料p1的树脂,在前后的frp片材p2之间进行熔接,与此同时,熔接frp片材p2和frp片材生料p1。此外,能够取代超声波熔接机,将转动加热了的辊的构造、按压细长的加热线的构造用作熔接装置11。

在熔接装置11的下游侧配设有送出装置12。送出装置12配置于主输送路径3的上方。该送出装置12构成为将其它frp片材生料p3送出到在主输送路径3行进的frp片材生料p1和frp片材p2的层叠物之上。如图3所示,就该frp片材生料p3而言,与frp片材生料p1相同,强化纤维f的取向方向是0°。

如图2所示,送出装置12具备:从卷成卷状的状态抽出frp片材生料p3的抽出装置12a;以及将由抽出装置12a抽出的frp片材生料p3在主输送路径3上传送的送料装置12b。送料装置12b构成为,由多个辊12c将从抽出装置12a抽出且暂时送出到上方的frp片材生料p3从上方送到下方,送出至在主输送路径3行进的上述层叠物之上。

如图1、图2所示,在比该送出装置12靠下游侧配设有熔接装置13。熔接装置13具有与熔接装置11相同的结构,将成为最上层的frp片材生料p3、成为其下层的frp片材生料p1、frp片材p2的层叠物熔接而一体化。此外,例如,如果能够由后述的配置于下游侧的熔接装置21将图3所示的四张片材(frp片材生料p1、frp片材p2、frp片材生料p3以及frp片材p4)全部熔接,则也可以没有熔接装置13。

如图1所示,在比该熔接装置13靠下游侧配设有第二frp片材形成部14。第二frp片材形成部14构成为与第一frp片材形成部5大致相同,具有:从卷成卷状的状态送出frp片材生料p1的送出装置15;使从该送出装置15送出的frp片材生料p1行进的副输送路径16;以及以预先设定的角度将在副输送路径16上行进的frp片材生料p1沿其宽度方向切断(裁切)的切断装置17。

送出装置15具备:从卷成卷状的状态抽出frp片材生料p1的抽出装置15a;以及将由抽出装置15a抽出的frp片材生料p1在副输送路径16上传送的送料装置15b。送料装置15b具备:上下配置的一对辊15c;以及与一对辊15c中的一方的辊15c连接并使该辊15c旋转的马达等驱动源15d。

切断装置17与第一frp片材形成部5的切断装置8相同地,以预先设定的角度将在副输送路径16上行进的frp片材生料p1沿其宽度方向切断。但是,该切断装置17以-45°的角度将frp片材生料p1沿其宽度方向切断,形成图3所示的frp片材p4。此外,在图3中,符号l3所示的边的长度为frp片材生料p1的宽度的√2倍的长度。

frp片材p4由输送装置18拾取。如图2所示,输送装置18具备:吸附保持frp片材p4的保持部18a;以及使该保持部18a在水平面上旋转,并将frp片材p4的强化纤维f的朝向设为预先设定的朝向的移动部18b。

输送装置18以成为与frp片材生料p1、frp片材p2、frp片材生料p3的强化纤维f的朝向(取向)不同的角度即-45°的方式将frp片材p4载置于frp片材生料p3(层叠物)上。此外,在载置frp片材p4时,以该frp片材p4的切断边l4分别位于frp片材生料p1的侧端缘上的方式对位。

如图1所示,在主输送路径3中的比副输送路径16稍靠下游侧设有熔接装置20。熔接装置20也为与熔接装置11大致相同的结构,在前后的frp片材p4之间进行熔接,并且将这些frp片材p4和其之下的层叠物(frp片材生料p3)熔接而一体化。

在比该熔接装置20靠下游侧设有另一个熔接装置21。该熔接装置21将最上层的frp片材p4和成为其下层的层叠物(frp片材生料p3)再次熔接。此时,该熔接装置21沿着与图3所示的frp片材p4的切断边l4交叉的方向将frp片材p4和层叠物熔接。也就是,通过以与熔接装置20不同的角度熔接,将得到的层叠物更牢固地一体化。

如图1所示,这样形成的frp片材层叠物p5被设于送料装置4的下游侧的切断装置22切断成矩形状的frp片材层叠体p6。如图2所示,frp片材层叠体p6依次容纳于配设在主输送路径3的下游侧的容纳箱23,用于下一个工序。例如,在下一个工序中,将frp片材层叠体p6放入辊压机,裁切成适当的形状,将得到的多个frp片材层叠体p6的形状物重叠,由此,形成所希望的三维形状。

接着,参照图5~图11b对设于上述结构的frp片材层叠装置1的片材间隙检测装置10进行说明。此外,在以下的说明中,对设于上述的熔接装置11的片材间隙检测装置10进行说明,但设于上述的熔接装置20的片材间隙检测装置19也具有相同的结构。

图5是示意性地表示本公开的frp片材p2的配置的俯视图。

如图5所示,frp片材p2以与frp片材生料p1在前后方向上几乎没有间隙地连续的状态配置。在这样的frp片材p2中,在主输送路径3的流动方向(以下称为片材流动方向)上,先行的第一frp片材50(第一纤维强化塑料片材)的前端51和后端52相对于frp片材生料p1(frp片材生料p1的长度方向)以+45°倾斜。另外,在片材流动方向上,第一frp片材50后续的第二frp片材60(第二纤维强化塑料片材)的前端61和后端62相对于frp片材生料p1(frp片材生料p1的长度方向)以+45°倾斜。

第一frp片材50和第二frp片材60在第一frp片材50的后端52与第二frp片材60的前端61之间具有间隙s而配置。间隙s具有第一frp片材50的后端52和第二frp片材60的前端61不会重叠的大小。该间隙s相对于frp片材生料p1大致隔开+45°而延伸。另外,第一frp片材50和第二frp片材60的强化纤维f的取向方向(长度方向)与间隙s(间隙s的延伸方向)大致平行。

图6是从片材流动方向观察本公开的片材间隙检测装置10及熔接装置11的主视图。图7是示意性地表示本公开的光检测传感器30的位置及衬垫40的形状的俯视图。

此外,俯视图是指从与frp片材生料p1、frp片材层叠物p5的板面垂直的方向观察的图。

如图6所示,熔接装置11具有:加热间隙s和其附近的加热部11a;使加热部11a升降的升降机构11b;以及使这些加热部11a及升降机构11b沿着间隙s移动的移动机构11c。

片材间隙检测装置10具有检测间隙s的光学式的光检测传感器30和介于frp片材生料p1与frp片材p2之间的衬垫40。光检测传感器30被滑块机构34支撑。在图6中,如箭头所示,滑块机构34在frp片材生料p1的侧端部的正上的位置与frp片材生料p1的外方(俯视时的外方)之间移动。该光检测传感器30设有一对,如图7所示,将检测光30a投射到间隙s的两侧端部。

光检测传感器30将检测光30a投射到包括第一frp片材50的后端52、第二frp片材60的前端61、以及从间隙s露出的frp片材生料p1(基准面)的区域,并接收其反射光。光检测传感器30例如根据该反射光的光量的变化来检测片材的台阶(边缘),基于其片材的台阶来检测间隙s。例如,可以适宜地将二维激光位移传感器用作这样的光检测传感器30。此外,片材的台阶(边缘)的检测部位也可以不是一个部位而是多个部位。

如图7所示,衬垫40也与光检测传感器30对应地设有一对。衬垫40形成为板状,插入到frp片材p2的两侧端部之下。此外,在以下的说明中,有时将与衬垫40的板面垂直的方向称为上下方向,将与frp片材生料p1(基准面)对置的板面设为下表面,将与frp片材p2侧对置(支撑)的板面设为上表面来进行说明。衬垫40的上下方向的厚度为frp片材p2的厚度的2倍以上的厚度,优选为5~10倍以上的厚度。衬垫40具有支撑第一frp片材50的第一支撑区域41、支撑第二frp片材60的第二支撑区域42、以及形成于第一支撑区域41与第二支撑区域42之间的台阶区域43。台阶区域43是从第一支撑区域41和第二支撑区域42沿下方向隔开的区域。也就是,台阶区域43是从衬垫40的上表面朝向下表面凹陷的部位。

第一支撑区域41是在片材流动方向上比台阶区域43靠下游侧(在图7中纸面左侧)的区域。第二支撑区域42是在片材流动方向上比台阶区域43靠上游侧(在图7中纸面右侧)的区域。台阶区域43形成于第一支撑区域41与第二支撑区域42之间的区域。第一支撑区域41在片材流动方向上小于第二支撑区域42。另外,台阶区域43在片材流动方向上足够地大于间隙s。即,第一frp片材50的后端52和第二frp片材60的前端61隔着间隙s配置于台阶区域43之上。

台阶区域43未延伸到与衬垫40的片材流动方向平行的端缘44。

换句话说,端缘44是frp片材生料p1的宽度方向上的衬垫40的端部,台阶区域43从端缘44分离而配置。

本公开的台阶区域43是沿上下方向贯通衬垫40的贯通孔43a,第一支撑区域41与第二支撑区域42之间是连接的。

此外,作为台阶区域43的变形例,也可以延伸到衬垫40的端缘44的单侧,成为像缺口那样的形状。另外,台阶区域43也可以延伸到衬垫40的两侧端,成为衬垫40在台阶区域43分割(分离)为第一支撑区域41和第二支撑区域42那样的形状。

衬垫40与移动装置45连接。移动装置45使衬垫40从检测光30a的投光区域后退。移动装置45具有直线移动的缸体等,使衬垫40后退到片材流动方向上游侧。在图7中,如箭头所示,衬垫40利用移动装置45在检测光30a穿过台阶区域43的位置与衬垫40的前端退避到检测光30a的上游侧的位置(具体来说,不干扰由熔接装置11进行的熔接的位置)之间移动。另外,衬垫40在例如以“+45°”和“-45°”切换frp片材生料p1的切断角度时,也可以与衬垫40能够沿与片材流动方向正交的方向避让的未图示的移动装置连接。

图8是从片材流动方向观察本公开的熔接装置11进行熔接时的片材间隙检测装置10的主视图。

如图8所示,在熔接装置11进行熔接时,光检测传感器30退避到frp片材生料p1的外方,另外,衬垫40退避到片材流动方向的上游侧。图8所示的符号33是在熔接装置11进行熔接时按压frp片材p2的按压部。如后述的图9a~9c所示,该按压部33形成为按压除去第二frp片材60的前端61以外的前端部的棒状。

按压部33按压第二frp片材60的前端61以外的前端部。该前端部是指与前端61的后方侧相邻的部位。

在按压部33形成有引入第二frp片材60的引导部33a。引导部33a是形成于按压部33的上游侧的下端部的锥面,随着朝向下游侧从上表面朝向下表面倾斜。该按压部33比第二frp片材60的前端61长,以相对于主输送路径3倾斜预定角度(+45°)的状态配置。按压部33与未图示的驱动部连接,构成为能够升降。此外,按压部33也可以是以下结构:不具有驱动部,在能够升降的状态下定位,利用自重来按压第二frp片材60的前端部。

另外,图9a~9c所示的符号32是按压除去第一frp片材50的后端52以外的后端部的按压部。

按压部32按压第一frp片材50的后端52以外的后端部。该后端部是指与后端52的前方侧相邻的部位。

该按压部32也比第一frp片材50的后端62长,以相对于主输送路径3倾斜预定角度(+45°)的状态配置。按压部32与未图示的驱动部连接,构成为能够升降。此外,按压部33也可以是以下结构:不具有驱动部,在能够升降的状态下定位,利用自重按压第一frp片材50的后端部。

接着,参照图9a~图11b对上述结构的片材间隙检测装置10的动作(片材间隙检测方法)及熔接装置11的动作(片材熔接方法)进行说明。此外,片材间隙检测装置10的动作及熔接装置11的动作由未图示的控制装置控制。

该控制装置由cpu(centralprocessingunit)、ram(randomaccessmemory)或rom((readonlymemory)等存储器及ssd(solidstatedrive)或hdd(harddiskdrive)等存储装置等构成。

图9a~图11b是示意性地表示本公开的片材间隙检测装置10的动作~熔接装置11的动作的侧视图。

在本方法中,首先,在检测第一frp片材50的后端52与后续的第二frp片材60的前端61之间的间隙s时,配置衬垫40(衬垫配置步骤)。在该衬垫配置步骤中,首先,如图9a所示,使衬垫40的第一支撑区域41支撑第一frp片材50,将第一frp片材50的后端52配置于台阶区域43之上(第一步骤)。另外,使衬垫40的第二支撑区域42支撑第二frp片材60的前端61。

即,在衬垫配置步骤中,以使第一frp片材50的后端52和第二frp片材60的前端61从frp片材生料p1分离的状态配置衬垫40。

接下来,如图9b所示,将第二frp片材60的前端61与第一frp片材50的后端52分离地配置于台阶区域43之上(第二步骤)。此外,在第二步骤中,优选的是,隔开比图5所示的适当的间隙s大的间隙(例如大10%~50%左右的间隙),将第二frp片材60的前端61配置于台阶区域43之上。由此,可靠地抑制第二frp片材60的前端61与第一frp片材50的后端52重叠。另外,在第二步骤中,因为输送装置9使第二frp片材60移动,所以上游侧的按压部33也可以抬起。此外,下游侧的按压部32也可以降低。而且,在第二步骤中,为了调整整个间隙s,输送装置9不仅可以平移第二frp片材60,也可以使其旋转移动。

如图9c所示,在本方法中,在衬垫配置步骤之后,将检测光30a投射到包括第一frp片材50的后端52、第二frp片材60的前端61以及从间隙s露出的frp片材生料p1(基准面)的区域,并接收其反射光(光检测步骤)。在此,至少在投射检测光30a的投光区域,第一frp片材50的后端52和第二frp片材60的前端61由衬垫40以与frp片材生料p1(基准面)分离的状态支撑。

换句话说,在至少包括投射检测光30a的投光区域的区域,第一frp片材50的后端52和第二frp片材60的前端61由衬垫40以从frp片材生料p1(基准面)分离的状态支撑。

此外,在光检测步骤中,因为上游侧的按压部33下降能够稳定地检测间隙s,所以优选,但如果输送装置9保持第二frp片材60,则上游侧的按压部33也可以抬起。

衬垫40抑制第一frp片材50的后端52和第二frp片材60的前端61与frp片材生料p1接触。由此,光检测传感器30容易检测片材的台阶(边缘),其结果,能够以高精度检测间隙s。另外,如图5所示,在第一frp片材50及第二frp片材60的强化纤维f的取向方向与间隙s平行的情况下,拉伸强度、韧性低的后端52、前端61特别容易下垂,另外,强化纤维f容易起毛,因此,配置该衬垫40有很大的效果。

如图10a所示,在本方法中,在光检测步骤之后,修正第二frp片材60相对于第一frp片材50的位置(片材位置修正步骤)。在该片材位置修正步骤中,将光检测传感器30检测到的间隙s与图5所示的合适的大小的间隙s进行比较,根据其差值,利用输送装置9来移动第二frp片材60。此外,在光检测步骤之后即在片材位置修正步骤之前或者在片材位置修正步骤之后,优选使衬垫40从检测光30a的投光区域后退。在使衬垫40后退时,优选在第一支撑区域41中抬起按压第一frp片材50的后端部的按压部32。另外,在图9c所示的光检测步骤中,在降下了上游侧的按压部33的情况下,优选抬起按压部33。

如图10b所示,在本方法中,在片材修正步骤之后,由按压部32按压除去第一frp片材50的后端52以外的后端部,并且由按压部33按压除去第二frp片材60的前端61以外的前端部(片材定位步骤)。

即,由按压部32按压第一frp片材50的后端52以外的后端部,并且由按压部33按压第二frp片材60的前端61以外的前端部。

此外,在由按压部33按压第二frp片材60的前端部之后,输送装置9能够解除与第二frp片材60的吸附,去拾取下一个frp片材p2。在本方法中,在片材定位步骤之后,如上所述,由熔接装置11在第一frp片材50的后端52与第二frp片材60的前端61之间进行熔接(片材熔接步骤)。

接下来,在本方法中,如图11a所示,为了在熔接的第二frp片材60的后端62熔接下一个frp片材p2,将frp片材生料p1送到片材流动方向的下游侧,并且使衬垫40的台阶区域43移动到光检测传感器30的正下方。如上一个工序的图10b所示,在使衬垫40后退到片材流动方向的上游侧时,使第二frp片材60的后端62成为乘载于衬垫40的第一支撑区域41的状态,由此,在将衬垫40返回到原来的位置时,不需要使其钻入第二frp片材60之下,因此,能够顺畅地进行衬垫40的移动。此外,在将衬垫40返回到原来的位置时,如图11a所示,优选抬起按压部32、33。

接下来,在本方法中,如图11b所示,使衬垫40的第一支撑区域41支撑第二frp片材60(为第一纤维强化塑料片材),将第二frp片材60的后端62配置于台阶区域43之上,并且,降下按压部32按压第二frp片材60的后端部。接下来,在本方法中,由输送装置9拾取下一个frp片材p2(第三frp片材70)。而且,使第三frp片材70(为第二纤维强化塑料片材)支撑于衬垫40的第二支撑区域42。

之后的动作成为从上述的图9a的流程的反复。

这样,根据上述的本公开,在主输送路径3中检测先行的第一frp片材50的后端52与后续的第二frp片材60的前端61之间的间隙s的片材间隙检测装置10具有:光检测传感器30,其将检测光30a投射到包括第一frp片材50的后端52、第二frp片材60的前端61、以及从间隙s露出的frp片材生料p1的区域,并接收其反射光;以及衬垫40,其至少在投射检测光30a的投光区域,以与frp片材生料p1分离的状态支撑第一frp片材50的后端52和第二frp片材60的前端61,通过采用这样的结构,能够提高frp片材p2的前后的间隙s的检测精度。

以上,参照附图对本公开的一个实施方式进行了说明,但本公开不限于上述实施方式。在上述的实施方式中示出的各结构部件的各种形状、组合等仅为一例,在不脱离本公开的主旨的范围内能够基于设计要求等进行各种变更。

例如,上述的衬垫40可以采用如图12所示的方式。此外,在以下的说明中,对于上述的实施方式相同或同等的结构标注相同的符号,简略或省略其说明。

图12是示意性地表示本公开的变形例的衬垫40a的侧面剖视图。

如图12所示,衬垫40a具有槽43b作为台阶区域43。槽43b也可以延伸到衬垫40a的端缘44(参照图7)。槽43b具有底部43b1。在底部43b1配设有正反射抑制部件46。正反射抑制部件46取代上述的frp片材生料p1,成为用于检测片材的台阶(边缘)的基准面。

与frp片材p2反射特性不同的部件作为正反射抑制部件46,优选比frp片材p2容易使检测光30a漫反射的部件,具体来说,优选在反射面形成有细的凹凸的片材或带状的部件。通过该结构,因为用于检测片材的台阶(边缘)的基准面的反射特性与frp片材p2不同,所以与以同材料的frp片材生料p1为基准面相比,更容易检测片材的台阶(边缘)。

另外,衬垫40a的后端部40b比衬垫40a的前端部40a隆起而形成。后端部40b比前端部40a厚,成为具有向上方隆起的圆角的形状。通过这样的结构,在使衬垫40a后退时,能够不使撕裂第二frp片材p2。即,由于第二frp片材p2的强化纤维的取向方向是一个方向,所以如果与衬垫40a摩擦的地方锋利,则衬垫40a进入强化纤维之间有时会撕裂第二frp片材p2。如果第二frp片材p2撕裂,则可能在避开的部分检测到间隙检测时发生读取错误,装置停止,因此,通过上述结构,能够消除这样的顾虑。

另外,在上述的本公开中,特别是将frp片材p2、frp片材p4的强化纤维f的取向方向设为+45°或者-45°,但也可以通过调整切断装置8、切断装置17的保持杆的角度,设为例如+30°(-30°)、+60°(-60°)等。

产业上的可利用性

本公开能够用于在纤维强化塑料片材的输送路径中检测先行的第一纤维强化塑料片材的后端与后续的第二纤维强化塑料片材的前端之间的间隙的片材间隙检测装置。

符号说明

3—主输送路径(输送路径),10—片材间隙检测装置,11—熔接装置,19—片材间隙检测装置,20—熔接装置,30—光检测传感器,30a—检测光,32—按压部,33—按压部,40—衬垫,40a—衬垫,40a—前端部,40b—后端部,41—第一支撑区域,42—第二支撑区域,43—台阶区域,43a—贯通孔,43b—槽,43b1—底部,44—端缘,45—移动装置,46—正反射抑制部件,50—第一frp片材(第一纤维强化塑料片材),51—前端,52—后端,60—第二frp片材(第二纤维强化塑料片材),61—前端,62—后端,f—强化纤维,p1—frp片材生料(基准面),p2—frp片材(纤维强化塑料片材),s—间隙。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1