一种单轴力矩传感器及其敏感方法与流程

文档序号:18752869发布日期:2019-09-24 21:24阅读:274来源:国知局
一种单轴力矩传感器及其敏感方法与流程
本发明涉及传感器
技术领域
,特别涉及一种单轴力矩传感器及其敏感方法。
背景技术
:随着科学技术的不断发展,机器人对外界的感知能力在不断提高,新型的工业机器人不再是单独的待在围栏中做一些单一重复的搬运、焊接等工作,他们需要与人类进行协同工作,需要像人类的手臂一样更加灵活自主的代替以人工作业为主的装配分拣及打包工作,而在这其中力矩传感器发挥着至关重要的作用,它能够实时监测机器人各个关节处的扭矩,然后利用力矩传感器实时反馈回来的数据与机器人动力学模型,可以实时监测机械臂与机器人是否发生了碰撞,从而采取相应的保护措施,实现机器人的柔性以及机器人的人机协作。此外力矩传感器的刚度与机器人关节的定位精度紧密相关。由于机械臂的放大效应,弹性体极小的角度变形,也将导致机械臂末端的极大位移。机器人关节单轴力矩传感器,其目前主流的检测方式是采用金属或半导体应变片检测内外环间的应变梁的剪切应变,从而得出传感器的力矩输出。由于应变片的灵敏度较差,需要通过降低弹性体扭转刚度来提高应变梁的变形量。而为了降低扭转刚度,应变梁结构尺寸进行相应变化,又会导致其他方向的刚度显著下降。采用应变片检测的力矩传感器,由于其各向刚度较低,限制了其应用范围和方式,因此很有必要设计一种单轴力矩传感器来解决这些问题。技术实现要素:本发明的主要目的在于提供一种单轴力矩传感器及其敏感方法,可以有效解决
背景技术
中的问题。为实现上述目的,本发明采取的技术方案为:一种单轴力矩传感器,包括第一螺纹孔(1)、第二螺纹孔(2)、外环(3)、内环(4)、应变梁(5)和石英振梁芯片(6),其特征在于:所述外环(3)上间隔均匀的设置有若干个第一螺纹孔(1),所述内环(4)上间隔均匀的设置有若干个第二螺纹孔(2),所述外环(3)与内环(4)通过两个或两个以上的应变梁连接,所述石英振梁芯片(6)在测量点成对安装,两端分别粘接于外环(3)、内环(4)、应变梁(5)之间,敏感外环(3)、内环(4)和应变梁(5)相互间的相对转动。一种单轴力矩传感器的敏感方法具体为:s1、当有垂直于盘面方向的力矩作用时,内环(4)与外环(3)间发生微小的相对扭转,且力矩的大小与扭转量成正比;s2、当内外环发生相对扭转时,在每个测量点,石英振梁芯片(6)的长度一个被压缩,一个被拉伸;s3、当石英振梁芯片(6)被拉伸或压缩时,其谐振频率发生变化,通过匹配电路测量两个石英振梁芯片(6)的谐振频率的增加或降低的值,可以得到其长度形变量,即是内环(4)与外环(3)的相对转动变形量;s4、通过将芯片对中两个芯片的频率变化量相减求差,可以消减温度等共模误差的影响,大幅提高内环(4)与外环(3)的相对转动变形量的测量精度;s5、通过对相对盘面中心径向对称布置的两对石英振梁芯片(6)的输出进行平均,可以消减测量点切线方向力的干扰;s6、通过三对或三对以上径向布置的石英振梁芯片(6)的输出进行解耦分析,可以进一步消除平行于盘面的力的干扰,提高测量的精度;s7、通过进行温度补偿,可以进一步提高测量准确性。作为本发明的一种优选技术方案,所述外环和内环分别通过第一螺纹孔和第二螺纹孔与弹性体两端的机械接口连接。作为本发明的一种优选技术方案,石英振梁芯片(6)通过金丝焊接与测量电路连接。作为本发明的一种优选技术方案,所述单轴力矩传感器的输出信号为经过内部数模转换和数据处理的数字信号。与现有技术相比,本发明具有如下有益效果:本发明通过采用极高灵敏度的石英振梁芯片,内外环只需要发生微小的相对转动即可进行敏感。因此,在保证高精度的同时,可以极大的提高传感器自身的各向刚度,尤其是扭转刚度,减小其工作时的自身变形,在敏感力矩的同时保证机器人的定位精度,扩展其使用范围。附图说明图1为本发明一种单轴力矩传感器实施例1的整体结构示意图;图2为本发明一种单轴力矩传感器实施例2的整体结构平面示意图;图中:1、第一螺纹孔;2、第二螺纹孔;3、外环;4、内环;5、应变梁;6、石英振梁芯片。具体实施方式为使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施方式,进一步阐述本发明。一种单轴力矩传感器,包括第一螺纹孔(1)、第二螺纹孔(2)、外环(3)、内环(4)、应变梁(5)和石英振梁芯片(6),其特征在于:所述外环(3)上间隔均匀的设置有若干个第一螺纹孔(1),所述内环(4)上间隔均匀的设置有若干个第二螺纹孔(2),所述外环(3)与内环(4)通过两个或两个以上的应变梁连接,所述石英振梁芯片(6)在测量点成对安装,两端分别粘接于外环(3)、内环(4)、应变梁(5)之间,敏感外环(3)、内环(4)和应变梁(5)相互间的相对转动。一种单轴力矩传感器的敏感方法具体为:s1、当有垂直于盘面方向的力矩作用时,内环(4)与外环(3)间发生微小的相对扭转,且力矩的大小与扭转量成正比;s2、当内外环发生相对扭转时,在每个测量点,石英振梁芯片(6)的长度一个被压缩,一个被拉伸;s3、当石英振梁芯片(6)被拉伸或压缩时,其谐振频率发生变化,通过匹配电路测量两个石英振梁芯片(6)的谐振频率的增加或降低的值,可以得到其长度形变量,即是内环(4)与外环(3)的相对转动变形量;s4、通过将芯片对中两个芯片的频率变化量相减求差,可以消减温度等共模误差的影响,大幅提高内环(4)与外环(3)的相对转动变形量的测量精度;s5、通过对相对盘面中心径向对称布置的两对石英振梁芯片(6)的输出进行平均,可以消减测量点切线方向力的干扰;s6、通过三对或三对以上径向布置的石英振梁芯片(6)的输出进行解耦分析,可以进一步消除平行于盘面的力的干扰,提高测量的精度;s7、通过进行温度补偿,可以进一步提高测量准确性。本实施例中,优选的,所述外环3和内环4分别通过第一螺纹孔1和第二螺纹孔2与弹性体两端的机械接口连接。本实施例中,优选的,所述石英振梁芯片6通过金丝焊接与测量电路连接。本实施例中,优选的,所述单轴力矩传感器,其输出信号为经过内部数模转化和数据处理的数字信号。实施例1:如图1所示,一种单轴力矩传感器,包括第一螺纹孔1、第二螺纹孔2、外环3、内环4、应变梁5和石英振梁芯片6,所述外环3上间隔均匀的设置有若干个第一螺纹孔1,所述内环4上间隔均匀的设置有若干个第二螺纹孔2,所述外环3与内环4通过四个正交分布的应变梁5连接,所述传感器在x正负方向和y正负方向共布置了四个测量点,位于应变梁5与内环4连接处的根部,每个测量点粘接有一对石英振梁芯片6,每个所述石英振梁芯片6的一端粘接于外环3上,每个所述石英振梁芯片6的另一端粘接于测量点。两个石英振梁芯片6的中轴线重合,沿测量点的切线方向。所述传感器的输出信号为每个测量点两个石英振梁芯片的频率相对其在无外力时的频率的变化量的差值(将石英振梁芯片6的频率变化记为f611,以此类推)。其输出为:x+方向频差:△f1=f611-f612;x-方向频差:△f2=f621-f622;y+方向频差:△f3=f631-f632;y-方向频差:△f4=f641-f642;当有z方向的力矩作用时,内环4与外环3间发生微小的相对扭转,力矩的大小与扭转量成正比。当内外环发生相对扭转时,测量点的两个石英振梁芯片6的长度一个被压缩,一个被拉伸。当石英振梁芯片6被拉伸或压缩时,其谐振频率发生变化,通过匹配电路测量两个石英振梁芯片6的谐振频率变化量,可以得到其形变量。通过两者之间相减求差,可以消减温度等共模误差的影响,大幅提高测量精度。当有z方向力或x或y方向力矩作用时,每个测量点的两个石英振梁芯片6都被同步拉伸或压缩,两者具有相同的频率变化量,两者相减之后的输出为0。当有x方向力的干扰时,x方向布置的两个测量点的石英振梁芯片6的被同步弯曲,具有相同的频率变化量,两者具有相同的频率变化量,两者相减之后的输出为0。y方向的两个测量点的频差输出相反,平均后为0。当有y方向力的干扰时,y方向两个测量点的石英振梁芯片6被同步弯曲,具有相同的频率变化量,两者具有相同的频率变化量,两者相减之后的输出为0。x方向的两个测量点的频差输出相反,平均后为0。若忽略加工与装配误差,则每个测量点的频差与外力大小有如下关系(将石英振梁芯片711的频率变化记为f711,以此类推):△f1△f2△f3△f4fx00k1-k1fy-k1k100fz0000tx0000ty0000tzk2k2k2k2其中:k1、k2为测量点频差与对应方向的力或力矩的比值,与所述传感器结构相关。表中的零元素是设计值,在实际产品中,由于存在加工和装配误差,各系数可能发生小量变化,这可以通过传感器标定工艺进行修正。在忽略加工和装配误差的情况下,本实施例的四个测量点的频差输出为:△f1=-k1*fy+k2*tz;△f2=k1*fy+k2*tz;△f3=k1*fx+k2*tz;△f4=-k1*fy+k2*tz;进行变换即得到传感器z方向的力矩tz:tz=(△f1+△f2)/2=(△f3+△f4)/2=(△f1+△f2+△f3+△f4)/4一般的,当平面内干扰力比较小时,在一个测量点使用一对石英振梁芯片进行检测即可得到较高精度。当干扰力较大时,为了提高精度,可以使用径向对称分布的两对石英振梁芯片6。若需要进一步提高检测精度,可以使用径向对称分布的四对或更多石英振梁芯片6。实施例2:如图2所示,所述外环3和内环4分别通过第一螺纹孔1和第二螺纹孔2与弹性体两端的机械接口连接。外环3与内环4通过四个正交分布的应变梁(701~704)连接。四个检测点位于内环上,与应变梁7成45°角交叉分布,石英振梁芯片(811-812、821-822、831-832、841-842)两端分别粘接于内环4和外环3上。其敏感原理与实施例1相同。由于修改了石英振梁芯片8的布设位置,避免了在应力集中区粘接,可以提高传感器的长期稳定性,降低噪声水平。由于石英芯片具有极高的灵敏度,内外环只需要发生微小的相对转动即可进行敏感。根据计算,可以具有1*10-9rad的角度分辨率。因此,可以在保证高精度的同时,极大的提高弹性体的扭转刚度,减小其工作时的自身变形,在敏感力矩的同时保证机器人的定位精度,扩展其使用范围。需要说明的是,本发明为一种单轴力矩传感器及其敏感方法,在使用时,以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1