技术总结
本发明公开了基于稀疏多周期组套索的多故障特征辨识方法,方法包括以下步骤:分析待识别的信号以构造二值周期序列b,基于故障特征信号呈现周期组内组间稀疏的特性获得促进周期组内组间稀疏的正则项P(x;b),基于不同故障特征频率的区分性建立稀疏多周期组套索模型;分别构造稀疏多周期组套索模型中数据保真项和正则项的受控优化算子,通过受控优化算子的解耦,实现变量之间的分离,针对每个受控优化算子,建立其优化的闭式解,通过迭代求解每种故障的受控优化算子对应的闭式解,实现模型求解;通过仿真信号统计分析自适应设置正则化参数,通过所述参数得出算法的自适应求解,从而分离得到每种故障;针对分离得到的每种故障,通过包络分析辨识故障类型。
技术研发人员:陈雪峰;赵志斌;王诗彬;孙闯;安波涛
受保护的技术使用者:西安交通大学
技术研发日:2019.01.25
技术公布日:2019.07.23