本发明涉及一种短波单站定位技术领域,特别是针对电离层虚高误差存在的定位场景,提供了一种基于神经网络的短波单站定位结果纠偏方法。
背景技术:
众所周知,无线信号定位技术广泛应用于通信、雷达、目标监测、导航遥测、地震勘测、射电天文、紧急救助、安全管理等领域,其在工业生产和军事应用中都发挥着重要作用。对目标进行定位(即位置参数估计)可以使用雷达、激光、声纳等有源设备来完成,该类技术称为有源定位技术,它具有全天候、高精度等优点。然而,有源定位系统通常需要依靠发射大功率电磁信号来实现,因此极易暴露自己的位置,容易被对方发现,从而遭到对方电子干扰的影响,导致定位性能急剧恶化,甚至会危及系统自身的安全性和可靠性。
目标定位还可以利用目标(主动)辐射或者(被动)散射的无线电信号来实现,该类技术称为无源定位技术,它是指在观测站不主动发射电磁信号的情况下,通过接收目标辐射或者散射的无线电信号来估计目标位置参数。与有源定位系统相比,无源定位系统具有不主动发射电磁信号、生存能力强、侦察作用距离远等优点,从而得到国内外学者的广泛关注和深入研究。无源定位系统根据观测站数目可以划分为单站无源定位系统和多站无源定位系统两大类,其中单站定位系统具有灵活性高、机动性强、系统简洁以及无需站间通信和同步等优点。
在现有的单站无源定位体制中,短波单站定位是应用较为广泛的一类定位方法,该方法主要针对短波辐射源信号进行定位。其基本原理是利用单个观测站测得短波信号的方位角和仰角以及电离层虚高参数对短波辐射源进行定位。然而,在实际应用中电离层虚高参数是通过有源探测所获得,因此人们很难准确获得此参数,只能得到其近似估计值。不幸的是,电离层虚高误差会导致短波辐射源的定位结果产生较大偏差,要想取得较高的定位精度必须要对此偏差进行纠正,这是需要重点解决的问题。
技术实现要素:
为解决现有技术中存在的上述问题,针对电离层虚高误差存在的应用场景下,本发明将提出一种基于神经网络的短波单站定位结果纠偏方法。
本发明提供的基于神经网络的短波单站定位结果纠偏方法,主要包括以下步骤:
步骤1、在目标源所在区域分时放置d个经纬度真实值已知的短波校正源;
步骤2、利用观测站对第d个校正源发射的短波信号进行接收,并且通过多重信号分类算法联合估计第d个校正源信号的到达方位角和到达仰角,1≤d≤d;
步骤3、根据所述第d个校正源信号的到达方位角和到达仰角,以及预先获得的电离层虚高,通过牛顿迭代法对第d个校正源的经纬度进行估计,得到第d个校正源的经纬度估计值;
步骤4、利用d个校正源的经纬度估计值和d个校正源的经纬度真实值训练多层前馈神经网络;
步骤5、利用观测站对目标源辐射的短波信号进行接收,并且通过多重信号分类算法联合估计目标源信号的到达方位角和到达仰角;
步骤6、根据所述目标源信号的到达方位角和到达仰角,以及所述电离层虚高,通过牛顿迭代法对目标源的经纬度进行估计,得到目标源的经纬度估计值;
步骤7、将目标源的经纬度估计值输入到训练好的多层前馈神经网络中,所述多层前馈神经网络的输出值即为目标源的最终经纬度值。
进一步地,所述步骤2中,所述观测站对第d个校正源发射的短波信号的阵列接收信号模型为式(1):
其中,
进一步地,所述步骤2中的通过多重信号分类算法联合估计第d个校正源信号的到达方位角和到达仰角具体为:
步骤2.1、对接收信号
步骤2.2、对所述协方差矩阵
步骤2.3、根据所述单位特征向量
进一步地,所述步骤3具体为:
步骤3.1、将第d个校正源的经纬度坐标按照式(2)转化成以观测站为中心的地平坐标:
其中,
步骤3.2、根据所述第d个校正源的地平坐标得到第d个校正源的到达方位角定位方程(3)和到达仰角定位方程(4):
其中,
步骤3.3、通过牛顿迭代法按照式(5)求解方程式(3)和式(4)得到第d个校正源的经纬度估计值:
其中,
进一步地,所述步骤4具体为:
依次将第d个校正源的经度估计值
其中,所述多层前馈神经网络包括一层输入层、两层隐藏层和一层输出层。
进一步地,所述步骤5中,所述观测站对目标源辐射的短波信号的阵列接收信号模型为式(6):
x(t)=a(θ,β)s(t)+n(t)(6)
其中,x(t)为观测站针对目标源的接收信号;s(t)为目标源信号的复包络;n(t)为阵列加性噪声;a(θ,β)为阵列流形向量;θ为目标源信号的到达方位角;β为目标源信号的到达仰角。
进一步地,所述步骤5中的通过多重信号分类算法联合估计目标源信号的到达方位角和到达仰角具体为:
步骤5.1、对接收信号x(t)进行采样,采集k个信号样本点{x(tk)}1≤k≤k,并且构造协方差矩阵
步骤5.2、对所述协方差矩阵
步骤5.3、根据所述单位特征向量记
进一步地,所述步骤6具体为:
步骤6.1、建立目标源的方位角定位方程(7)和到达仰角定位方程(8):
其中,δ为观测站与目标源之间的直线距离,θ为目标源信号的到达方位角;β为目标源信号的到达仰角;ω为目标源的待求经度值;ρ为目标源的待求纬度值;
步骤6.2、通过牛顿迭代法按照式(9)求解方程式(7)和式(8)得到目标源的经纬度估计值:
其中,
本发明的有益效果:
本发明提供的基于神经网络的短波单站定位结果纠偏方法,结合多重信号分类(multiplesignalclassification;music)算法和牛顿迭代法可以实现短波单站定位;利用目标源附近的短波校正源提供的地理坐标参数(即经度和纬度),训练多层前馈神经网络,基于该神经网络可以有效消除由电离层虚高误差所引起的定位偏差,从而进一步提高短波单站定位精度。
附图说明
图1为本发明实施例提供的基于神经网络的短波单站定位结果纠偏方法的流程示意图;
图2为本发明实施例提供的坐标系转换示意图;
图3为本发明实施例提供的确定到达仰角定位方程的三角形示意图;
图4为本发明实施例提供的多层前馈神经网络的结构示意图;
图5为本发明实施例提供的music算法的空间谱图示意图;
图6为本发明实施例提供的神经网络训练结果示意图;
图7为本发明实施例提供的定位结果散布图;
图8为本发明实施例提供的目标源定位均方根误差随着目标源信噪比的变化曲线;
图9为本发明实施例提供的目标源定位均方根误差随着圆阵半径与波长比的变化曲线;
图10为本发明实施例提供的目标源定位均方根误差随着圆阵阵元个数的变化曲线;
图11为本发明实施例提供的目标源定位均方根误差随着电离层虚高误差的变化曲线。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1为本发明实施例提供的基于神经网络的短波单站定位结果纠偏方法的流程示意图。如图1所示,该方法包括以下步骤:
s101、在目标源所在区域分时放置d个经纬度真实值已知的短波校正源;
s102、利用观测站对第d个校正源发射的短波信号进行接收,并且通过多重信号分类算法联合估计第d个校正源信号的到达方位角和到达仰角,1≤d≤d;
s103、根据所述第d个校正源信号的到达方位角和到达仰角,以及预先获得的电离层虚高,通过牛顿迭代法对第d个校正源的经纬度进行估计,得到第d个校正源的经纬度估计值;
s104、利用d个校正源的经纬度估计值和d个校正源的经纬度真实值训练多层前馈神经网络;
s105、利用观测站对目标源辐射的短波信号进行接收,并且通过多重信号分类算法联合估计目标源信号的到达方位角和到达仰角;
s106、根据所述目标源信号的到达方位角和到达仰角,以及所述电离层虚高,通过牛顿迭代法对目标源的经纬度进行估计,得到目标源的经纬度估计值;
s107、将目标源的经纬度估计值输入到训练好的多层前馈神经网络中,所述多层前馈神经网络的输出值即为目标源的最终经纬度值。
本发明实施例提供的基于神经网络的短波单站定位结果纠偏方法,首先基于单个观测站中的天线阵列,利用music算法估计每个校正源信号的到达方位角和到达仰角;接着结合电离层虚高参数,通过牛顿迭代法依次求解每个校正源的地理坐标(即经纬度估计值);然后利用校正源的经纬度估计值与其真实值训练多层前馈神经网络,该网络将校正源的经纬度估计值作为输入,将校正源的经纬度真实值作为输出,当训练结束时此神经网络就可用于纠正由电离层虚高误差引起的定位偏差;最后采用相同方法(即结合music算法和牛顿迭代法)估计目标源的经纬度,并且将估计值输入到已经训练好的多层前馈神经网络中,神经网络的输出值即为纠偏之后的目标源经纬度,从而提高了短波单站定位精度。
在上述实施例的基础上,本发明还提供另一个实施例,其流程具体如下:
s201、在目标源所在区域分时放置d个经纬度真实值已知的短波校正源;
具体地,需要在目标源附近放置若干位置精确已知的短波校正源,并且能够探测到校正源的短波信号到达观测站所经历的电离层虚高参数。
s202、利用观测站对第d个校正源发射的短波信号进行接收,观测站对第d个校正源发射的短波信号的阵列接收信号模型为式(1):
其中,
s203、通过多重信号分类算法联合估计第d个校正源信号的到达方位角和到达仰角,具体为:
s2031、对接收信号
s2032、对所述协方差矩阵
s2033、根据所述单位特征向量
s204、根据所述第d个校正源信号的到达方位角和到达仰角,以及预先获得的电离层虚高,通过牛顿迭代法对第d个校正源的经纬度进行估计,得到第d个校正源的经纬度估计值;
具体地,在实际应用中,可以采用有源探测手段获得电离层虚高参数。本步骤具体流程为:
s2041、将第d个校正源的经纬度坐标按照式(2)转化成以观测站为中心的地平坐标,如图2所示:
其中,
s2042、根据所述第d个校正源的地平坐标得到第d个校正源的到达方位角定位方程(3)和到达仰角定位方程(4),确定到达仰角定位的三角形如图3所示:
其中,
s2043、通过牛顿迭代法按照式(5)求解方程式(3)和式(4)得到第d个校正源的经纬度估计值:
其中,
s205、利用d个校正源的经纬度估计值和d个校正源的经纬度真实值训练多层前馈神经网络,具体为:如图4所示,依次将第d个校正源的经度估计值
其中,所述多层前馈神经网络包括一层输入层、两层隐藏层和一层输出层。
s206、利用观测站对目标源辐射的短波信号进行接收,观测站对目标源辐射的短波信号的阵列接收信号模型为式(6):
x(t)=a(θ,β)s(t)+n(t)(6)
其中,x(t)为观测站针对目标源的接收信号;s(t)为目标源信号的复包络;n(t)为阵列加性噪声;a(θ,β)为阵列流形向量;θ为目标源信号的到达方位角;β为目标源信号的到达仰角。
s207、通过多重信号分类算法联合估计目标源信号的到达方位角和到达仰角,具体为:
s2071、对接收信号x(t)进行采样,采集k个信号样本点{x(tk)}1≤k≤k,并且构造协方差矩阵
s2072、对所述协方差矩阵
s2073、根据所述单位特征向量记
s208、根据所述目标源信号的到达方位角和到达仰角,以及所述电离层虚高,通过牛顿迭代法对目标源的经纬度进行估计,得到目标源的经纬度估计值;
具体地,本步骤中的电离层虚高与步骤s204中计算得到的电离层虚高参数一致。本步骤具体为:
s2081、建立目标源的方位角定位方程(7)和到达仰角定位方程(8):
其中,δ为观测站与目标源之间的直线距离,θ为目标源信号的到达方位角;β为目标源信号的到达仰角;ω为目标源的待求经度值;ρ为目标源的待求纬度值;
s2082、通过牛顿迭代法按照式(9)求解方程式(7)和式(8)得到目标源的经纬度估计值:
其中,
s209、将目标源的经纬度估计值输入到训练好的多层前馈神经网络中,所述多层前馈神经网络的输出值即为目标源的最终经纬度值。
具体地,将步骤s208中的
为了验证本发明方法的有效性,提供以下实验数据。
假设观测站的经度为东经112.73°,纬度为北纬33.25°;目标源的经度为东经124.46°,纬度为北纬28.82°。观测站安装均匀圆阵,用于估计短波信号的二维到达角度参数,短波信号到达观测站所经历的电离层虚高为240公里。
(1)短波信号的信噪比为10db,music算法采用的样本点数为k=500,图5给出了music算法的空间谱图,图中的谱峰位置对应短波信号的二维到达角度估计值。
(2)图6给出了神经网络的训练结果,从图中可以看成其训练效果非常好。
(3)将均匀圆阵个数固定为10,半径与波长比固定为1.5,电离层虚高误差固定为50公里,信噪比固定为10db,图7给了定位结果散布图。从图7中可以看出,本发明公开的基于神经网络的短波单站定位结果纠偏方法可以明显消除电离层虚高误差所带来的影响,从而显著提高了对辐射短波的目标源的定位精度。
(4)其余实验条件不变,图8给出了目标源定位均方根误差随着信噪比的变化曲线,图9给出了目标源定位均方根误差随着圆阵半径与波长比的变化曲线,图10给出了目标源定位均方根误差随着圆阵阵元个数的变化曲线,图11给出了目标源定位均方根误差随着电离层虚高误差的变化曲线。从图8~图11中可以进一步看出本发明公开方法的优势,并且该优势随着电离层虚高误差的增加而显著提升。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。