本实用新型属于柔性电子领域,尤其涉及一种压电/压阻双模式传感器。
背景技术:
近年来,随着人工智能和物联网的快速发展,人们对智能终端的需求也越来越高,柔性智能电子设备作为新兴产品受到越来越多的追捧,而作为其核心部件之一的柔性压力传感器也逐渐成为了研究热点。相对于传统的刚性传感器,柔性压力传感器由于刚度小,变形大等特点可以适用于人体及多种复杂工作环境。将柔性压力传感器集成在可穿戴电子设备或做为电子皮肤直接贴在人体表面可以进行人体运动姿态的有效测量,结合远程信息传输和及时通讯的功能,未来可能实现远程的医疗诊断、健康监测及预防跌倒报警等功能。智能机器人领域的发展也离不开柔性传感器技术,其感知功能是它与外界信息交流的纽带,智能机器人的皮肤应该像人的皮肤一样柔软,可包覆复杂的结构,能够感知外界压力的刺激。
此外,柔性压力传感器一般很薄,容易在狭小工作空间贴敷于工件表面,通过传感器阵列可以检测复杂形状表面的压力分布在精密加工领域也有着广泛的应用前景。压阻式传感器对微小的压力具有非常敏感的响应特性,但是在保持高的灵敏度时,线性检测区间较小,而且大多数压阻式传感器不能感知受力方向或者应变方向。压阻式传感器虽然能感知静态信息和缓慢的信号变化,但是其响应时间较长,对瞬时的信号突变不敏感,不能感知瞬时的变形速率等信息。压电式压力传感器将外界刺激转化为电压或电流脉冲信号,能够感知瞬间的动态信息,但是电荷量随着时间的推移而减少,所以压电或摩擦电传感器适用于高频信号的检测,不适合静态信息的检测。目前,将压电、压阻传感性能结合的双模式传感器的研究还很少,并不能实现压力大小、加载速率,弯曲应变大小、应变速率的检测。
技术实现要素:
本实用新型的目的是针对目前压电式传感器与压阻式传感器的传感特点与性能优势,设计并制备一种双模式传感器。使压电传感和压阻传感的性能互补,根据压阻电流值进行静态力的检测和电压脉冲值检测高频动态信号,从而实现单模式传感器无法实现的功能,用于应变过程的检测。
为到达上述功能,本实用新型是通过以下技术方案实现的:一种双模式传感器,包括压电层和压阻层;所述压电层由具有微结构的压电复合薄膜,以及喷涂在复合薄膜上金电极构成;所述压阻层由喷涂在具有微结构的金电极表面的石墨烯薄膜和喷涂在具有微结构的pdms表面的石墨烯薄膜构成;所述微结构为正四棱台微阵列,所述正四棱台的上底面边长和下底面边长的比值k与阵列高度h满足:
其中,
进一步地,所述正四棱台微阵列优选为金字塔形微阵列。
进一步地,所述正四棱台微阵列高度优选为h=40μm。
与现有技术相比,本实用新型具有以下有益效果:本实用新型通过计算分析了正四棱台微阵列对压电层传感性能的影响,当正四棱台微结构的几何参数k和h增大时,压电层输出电压值增大,灵敏度升高。确定了最优的微结构—金字塔微结构,并通过倒膜的方法制备了具有金字塔微结构阵列的压电传感层。双模式传感器使压电传感机理与压阻传感机理相互协作,完成单一模式传感器无法实现的功能,既能够检测出静态力变化,又能反馈高频信号刺激,在检测物体的受力或者变形过程中,得到更多受力信息。
附图说明:
图1是正四棱台微结构示意图;
图2是压电/压阻双模式传感器传感示意图;
图3是压电/压阻双模式传感器制备流程图;
图4是压电/压阻双模式传感器压力传感性能图:4a为灵敏度性能测试,4b为电流、电压特性曲线;
图5是压电/压阻双模式传感器弯曲应变传感性能图:5a为弯曲应变过程,5b为弯曲过程中压电、压阻信号波形,5c为理论-实际误差分析。
具体实施方式
一种双模式传感器,所述传感器包括压电层和压阻层;所述压电层由具有微结构的压电复合薄膜,以及喷涂在复合薄膜上金电极构成;所述压阻层是由喷涂在具有微结构的金电极表面和具有微结构的pdms的石墨烯薄膜构成;所述微阵列结构为正四棱台微阵列。根据压电效应的本构方程:
其中cij、eij和kij分别是弹性劲度常数、压电应力常数和介电常数,σij为应力,εij为应变,d为电位移,e为电场强度。
当压电薄膜受到法向力作用时,σ11和σ22都等于0,上式(2)和(3)联立,表示为:
消去ε11,ε22和ε33得:
其中:d3为法相电位移,
又根据电场和电势之间的关系:
进一步得到压电薄膜的法相电位移为:
v为压电薄膜的输出电压,l为p(vdf-trfe)膜的厚度。
根据麦克斯韦方程和欧姆定律,电流i的大小与电位移d3、电压v和电阻r有关,根据它们之间的关系:
其中,t为时间,a为压电薄膜受力面积。将电流i和电位移d3的消除后得到:
又
根据初始条件v(t=0)=0,输出电压v为:
式中:
为了进一步提高压电薄膜的压电效应,在平面薄膜表面引入正四棱台微阵列结构,相对于平面薄膜结构,如图1所示,四棱台结构在垂直方向上的截面积是不同的,压电薄膜受到的法向应力σ33在垂直方向上是相等的,而四棱台在垂直截面上的应力σ33是不同的。
设四棱台上表面的边长为a1,底部边长为高度为h(图1)。则四棱台的平均应力可表示为:
式中,定义几何参数k=a2/a1。当k=1时,正四棱台的上顶面的面积等于下底面的面积,可以看作为平面薄膜的一个微单元。从式(17)中可以看出当四棱台的高度h和底部边长a2不变时,上顶面边长a1越小,平均应力σ'33越大。为了得到正四棱台上下端面之间的输出电压值,将平均应力σ'33带入
从而得出:
从公式(1)中可以看到压电传感器的输出电压与正四棱台微结构与几何参数k和高度h成正比。所以为了提高压电传感层的传感性能,应该尽可能减小微结构上顶面的面积与增大微结构的高度。因此,当正四棱台为金字塔结构时,压电层传感性能达到最优。当金字塔微结构的底边变长为60μm时,目前的微结构加工技术可制备的最大高度为40μm。
所述压电层通过以下方法制备:
(1)将1gbto纳米颗粒浸泡于10mlh2o2,在90℃条件下浸泡6h使bto纳米颗粒表面改性,烘干得到h-bto粉末。
(2)取步骤(1)制备得到的h-bto粉末0.025g,溶解于10ml的dmf中,同时取0.225gp(vdf-trfe)粉末溶解于另一份10ml的dmf中,随后将两份dmf溶液混合均匀;
(3)将步骤(2)中的混合溶液旋涂在具有正四棱台微阵列的硅模板上,硅模板尺寸为1cm×1cm,恒温干燥至固化成膜,再在120℃下退火处理2h随后降温,冷却到室温后,将复合薄膜从硅模板上剥离。
(4)在步骤(3)得到的复合薄膜的两个表面采用电子束蒸发技术分别镀上100nm厚度的金电极,分别连接一根引线,制备得到具有正四棱台微阵列的压电薄膜。
所述压阻层包括以下制备方法:
(1)所述pdms采用的是美国道康宁公司型号为dc184,将pdms与固化剂按照质量比10:1混合均匀,真空除气泡;
(2)将除去气泡的pdms旋涂在具有正四棱台微阵列的硅模板上,硅模板尺寸为1cm×1cm,恒温干燥至固化成膜,并从硅模板上剥离;
(3)将10ml0.75mg/ml石墨烯溶液滴涂至具有微阵列的pdms表面和金电极表面,并烘干,并在石墨烯表面引出一根引线,得到具有正四棱台微阵列的压阻层。
实施例
本实施例提供一种压电/压阻双模式传感器,其微阵列结构采用的是底边边长60μm,高度40μm的金字塔形微阵列。如图1所示压电/压阻双模式压力传感器包括压电层和压阻层两部分。在压电层的上、下两面制备了金电极,压电层输出的压电信号通过金电极接入电压表。在压电层和压阻层的微结构表面都覆盖了一层rgo。压阻信号通过两层rgo输入到电流表。压电层和压阻层的传感信号通过不同的电极输出,避免了两组信号的相互干扰,确保了测试的准确性。
在双模式传感器中,压电层和压阻层具有各自的性能特点。在压力检测时,双模式传感器粘贴在英斯特朗万能试验机的抗压盘的中部,通过压头对传感器施加压力,这样可以精确控制压力的大小和加载速率,压电层两条引线连接到keithley6517b高阻表(r=1tω)上检测压电层的输出电压。压阻层两条引线连接到半导体分析测试仪4200上检测压阻层电流的变化。当外部作用力缓慢施加在传感器表面时,可以看作一个准静态过程,所谓准静态过程是指信号从一个平衡状态向另一个平衡状态变化时经历的全部状态,此过程中连续经过无数个中间的平衡状态过渡到另一个平衡状态,即过程中信号偏离平衡状态无限小,过程均匀缓慢且无任何突变。为了准确检测压力的大小,如图4(a)所示,当压强从0pa缓慢增加到1kpa时,压电层产生的瞬间的脉冲信号峰值很小,脉冲信号淹没在环境噪声之中,从压电信号无法直接读取外部作用力的信息,而压阻层对静态信息或者准静态信息有优越的传感性能,压阻层的电流会随着压强的缓慢增加而缓慢升高。因次,压阻层能感知作用力微小的缓慢变化。
当压力频率为200hz时,当压强增大时,电流值并没有明显的升高,而且电流信号也不稳定。电流值的大小已经不能正确反映压强的大小。相对于压阻层信号,压电层信号能检测出高频压力信息的变化。如图4(a)所示,当压强增加时,压电电压的峰值也发生明显的升高。从图4(b)中可以看到压电电压峰值与压强大小具有良好的线性度(l=0.99)和灵敏度(s=1.62v/kpa)。
压电层的最小检测阈值为100pa,当压强小于100pa时,压电层的压电信号会淹没在环境噪声信号之中,因此压电层无法检测小于100pa的压强。相对于压电层,压阻层对微小的压强信号非常敏感。从图4(b)中可以看到,压阻层最小检测阈值为15pa,压阻层可以检测出小于100pa的压强的大小,这一点上,压阻层的传感性能弥补了压电层传感性能的不足之处。虽然压阻层能实现微小压强的检测,但是当压强大于4kpa,电流大小已经达到最大值,电流值不会随着压强的升高而发生变化。而压电层可以检测出较大的压强信息。当压强从4kpa递增到9kpa时,压电电压峰值逐渐升高,根据电压峰值的大小可以检测出压强的大小,此时压电层的传感器性能弥补了压阻层传感性能的不足。
如图4(b)所示,压阻层的压强检测区间为15pa~4kpa,压阻传感层的灵敏度为s=14.5/kpa,并且具有良好的线性度l=0.98。压电层的压强检测区间为0.1~9kpa,灵敏度为s=1.62v/kpa,线性度l=0.99。当压强小于0.1kpa时,根据压阻层电流的大小可以实现压强强弱检测。当压电在0.1~4kpa时,压电层和压阻层的信号强弱都能反映出压强的大小。当压强进一步增强时,压强大小超过压阻层的最大检测阈值,而压电层的最大压强检测阈值为9kpa,当压强在4~9kpa时,压电层可以实现压强的强弱检测。
在对物体的应变过程检测中,弯曲试样为100mm,宽度为20mm的硬纸板,双模式传感器贴在弯曲试样的中部,弯曲试样的两端夹持在英斯特朗万能试验机的夹具上,压电层两条引线连接到keithley6517b高阻表(r=1tω)上检测压电层的输出电压。压阻层两条引线连接到半导体分析测试仪4200上检测压阻层电流的变化。在测试过程中,双模式传感器能同时感知试样的弯曲应变的大小、方向以及应变速率。图5(a)为试样的弯曲应变过程,这里规定试样向左弯曲的应变量为正,向右弯曲的应变量为负。图5(b)为弯曲过程中压电信号和压阻信号的波形,首先当压电脉冲为正值,电流值上升时,说明试样向左弯曲。压电脉冲信号为负值,电流上升时,说明试样向右弯曲。同时根据电压脉冲的峰值大小可以检测出试样的应变速率,例如当电压脉冲的峰值为0.35v时,根据输出电压与应变速率s之间的关系vout=(s-0.05)×0.18可以达到此时的应变速率为2.03%/s。同理,当δi/i0=0.45时,根据δi/i0=(ε-0.02%)×2.16,可以得到试样的弯曲应变量为2.09%。结合压电传感和压阻传感,对每段压电信号和压阻信号进行分析计算可以重现出试样历经的弯曲应变过程。如图5(c)所示,实线为试样实际变形过程,虚线为传感器测试结果。可以看到通过传感器信号计算得到的变形过程和试样的实际变形过程非常吻合。