旋转紧凑型光测距系统的制作方法

文档序号:21093177发布日期:2020-06-12 17:22阅读:179来源:国知局
旋转紧凑型光测距系统的制作方法

本申请是发明名称为“旋转紧凑型光测距系统”、申请日为2018年12月6日、申请号为“201880047404.2”的中国专利申请的分案申请。

相关申请的交叉引用

本申请要求以下专利申请的优先权:2018年12月4日提交的标题为“旋转紧凑型光测距系统(rotatingcompactlightrangingsystem)”的第16/209,867号美国专利申请('867申请);2018年12月4日提交的标题为“具有相对电路板的光测距系统(lightrangingsystemwithopposingcircuitboards)”的第16/209,869号美国专利申请('869申请);2018年12月4日提交的标题为“具有光学通信上行链路和下行链路通道的旋转光测距系统(rotatinglightrangingsystemwithopticalcommunicationuplinkanddownlinkchannels)”的第16/209,875号美国专利申请('875申请);以及2018年12月4日提交的标题为“具有多元体形透镜系统的光测距装置(lightrangingdevicewithamulti-elementbulklenssystem)”的第16/209,879号美国专利申请('879申请)。'867、'869、'875和'879申请中的每一个出于所有目的以全文引用的方式并入本文中,且各自要求2017年12月7日提交的标题为“紧凑型lidar系统(compactlidarsystem)”的第62/596,018号美国临时专利申请的权益,所述临时专利申请也出于所有目的以全文引用的方式并入本文中。



背景技术:

光成像、检测和测距(lidar)系统通过用脉冲激光照明目标且用传感器测量反射的脉冲来测量到目标的距离。接着可使用飞行时间测量值来产生目标的数字3d表示。lidar系统可用于各种需要使用3d深度图像的应用,包含考古学、地理学、地质学、林业、绘图、建造、医学成像和军事应用,以及其它应用。自主车辆也可使用lidar用于障碍检测和避免以及车辆导航。

提供足以用于自主车辆中的障碍检测和避免的覆盖度和分辨率的许多当前可用的lidar传感器技术上较复杂并且制造起来很昂贵。此类传感器因此可能太昂贵而不能在大众市场汽车、卡车和其它车辆中广泛部署。特定类型的lidar传感器的总体组件成本和制造复杂性通常受lidar传感器本身的架构中的底层复杂性影响。这一问题在一些现代lidar传感器中可能进一步加剧,所述现代lidar传感器是不同内部子系统的组合,每一子系统本身可能非常复杂,例如光电系统、机电系统、计算机控制系统、高速通信系统、数据处理系统等。

为了实现对于一些现代感测应用可能是重要的高位置准确性、长距离范围和低功耗,针对这些子系统中的每一子系统的严格技术要求导致架构和设计变复杂且难以构建,并且常常需要先进行昂贵的校准和对准程序,然后各个lidar单元才可供消费者使用。举例来说,一些lidar系统的内部架构采用一个或多个较大主板和庞大而沉重的光学系统,它们安装在配衡结构部件上,全部在以约1,000rpm的速率旋转的转台内。在这些系统中的一些系统中,单独的激光发射器/检测器对安装到各个单独电路板。因此,每一发射器板和接收器板可能需要单独地安装到母板,每一发射器/检测器对沿着特定方向精确对准以确保每一检测器的视场与检测器的相应发射器的视场重叠。由于上述架构,在组装期间通常需要精度对准技术来单独地对准每一发射器板和每一接收器板。

当希望缩放装置的分辨率时,上文所描述的架构越来越成问题。增加分辨率需要添加更多的激光发射器/检测器对,它们同样各自安装在其自身的电路板上。因此,在此类型的架构的情况下线性地缩放分辨率可能会导致制造成本的指数级增加,考虑到所涉及的单个零件和板的数量过大,此举也可能导致可靠性的指数级降低。一旦组装和对准完成,则必须十分小心,已精确对准的多板布置不能在运送期间或系统的设计寿命内的某一其它时间点因干扰或颠簸而不再对准。

除光学系统的对准和组装的复杂性之外,大多数当前可用的lidar单元还具有相对低的总系统集成度。举例来说,许多当前可用的lidar单元中的控制和驱动电路是安装到定制板的单独模块。这些定制板又可能需要安装到lidar单元内的母板,或可借助于一个或多个安装托架安装在lidar单元的结构元件上的某个其它地方。在某些情况下,每一板都可具有一个或多个电互连件,所述电互连件需要布线穿过罩壳内的一个或多个内部容积空间或通路以最终与母板连接。

对于旋转lidar系统,电马达转子和/或定子可能需要更多的额外专门安装件和互连件。除功率连接之外,还需要数据上行链路和下行链路线路,且其通常由一个或多个电感、电容和/或金属滑环旋转联接器实现,它们可能难以实施和/或导致低数据传送速率。一些系统采用旋转联接器内的金属刷,且因此可能归因于旋转结构内的刷子的机械接触要求而不可靠。其它滑环型连接器可能采用例如汞等有害物质,从而致使这些类型的联接器不符合有害物质限制指令2002/95/ec(rohs)且因此不赞成使用,甚至在一些管辖区内是禁止的。

相对于光电系统,行业在并入例如基于cmos的单光子雪崩二极管(spad)等有成本效益的单光子光电检测器方面已经经历了挑战,这是归因于其在近红外波长内的低量子效率和其低动态范围。为了改进量子效率,一些基于spad的检测器采用ingaa技术,但此类系统与cmos装置相比在以有成本效益的方式集成方面更具挑战性。因此,与使用ingaas技术制造的spad检测器相关联的外部/支持电路(例如,可感测雪崩电流的前导边沿、产生与雪崩累积同步的标准输出脉冲、通过将偏压降低回到崩溃电压来淬灭雪崩,且接着使光电二极管复原到操作水平的淬灭电路)通常与spad阵列分开制造在例如spad阵列外部的封装中。此外,ingaas衬底相对昂贵,且相关联制造工艺通常具有比硅衬底制造工艺低的良率,从而使成本增加加剧。使事情更复杂的是,ingaas衬底通常需要有效地冷却以便将暗电流减小到合适的电平,这增加了运行时期间消耗的能量的量,从而更进一步增加成本和复杂性。

代替于采用基于spad的检测器,许多市售lidar解决方案采用雪崩光电二极管(apd)。apd不是二元检测装置,而是输出与入射在检测器上的光强度成比例的模拟信号(例如,电流),且因此具有高动态范围。然而,apd必须由若干额外模拟电路支持,包含(例如)比如跨阻抗放大器和/或差分放大器、高速a/d转换器、一个或多个数字信号处理器(dsp)等模拟电路。传统apd还需要标准cmos工艺无法实现的高反向偏压电压。没有成熟的cmos,就难以以紧凑的形状因数将所有此模拟电路集成到单个芯片上,且通常采用位于印刷电路板上的多个外部电路模块,这导致了这些现有单元的高成本。

相应地,为了支持3d感测系统的增长的市场,一直需要更具成本效益但仍有高性能的lidar系统。此外,一直需要实现可有效地大规模采用的流线型组装工艺的经过改进且更优美的系统架构。



技术实现要素:

本公开的实施例涉及一种lidar单元,其尤其可用于自主车辆中的障碍检测和避免。本公开的各种实施例可解决上文所论述的与一些当前可用的lidar系统相关联的问题中的一个或多个。一些特定实施例涉及lidar系统,所述lidar系统包含使系统能够足够便宜并以足够的可靠性制造且具有足够小的覆盖面以供在大众市场汽车、卡车和其它车辆中使用的设计特征。

在一些实施例中,根据本公开的一种自旋光测距系统可包含光测距装置(例如,其发射光脉冲并检测反射的脉冲),其连接到围绕由轴杆限定的轴线旋转的上部电路板组合件。上部电路板组合件可经由相应电路元件与下部电路板组合件协作,例如以提供功率、数据和/或编码位置。在旋转上部板组合件和下部板组合件上包含协作的无线电路元件(例如,与外部物理连接相对)可提供较紧凑的设计。此外,特定电路元件(例如,光学或功率)可以某一方式定位以实现有效通信和/或增加通量。举例来说,无线功率接收器可提供在上部电路板组合件的外边缘处的环处,从而使由电感环捕获的磁通量的量最大化或使电容系统中可用的面积最大化。

根据一些实施例,一种光学通信子系统可在旋转光测距装置和不围绕轴杆旋转的基底子系统之间提供光学通信通道。所述光学通信通道可提供快速通信,并且可提供紧凑且便宜的设计。举例来说,转台光学通信组件可定位在旋转组合件上以与基底光学通信组件进行数据通信(例如,来自光测距装置的测距数据)。此定位可缓解对于较庞大通信机构的需要。举例来说,下行链路传输器可定位成经由用于旋转的中空轴杆传输光学测距数据。作为另一实例,基底子系统的一个或多个上行链路传输器可将上行链路信号传输到在旋转组合件上旋转的一个或多个上行链路接收器,例如其中这些上行链路元件定位于对准的环中。

根据一些实施例,上部电路板组合件的旋转可由集成在上部和下部电路板上的定子和转子元件驱动,借此使光测距系统紧凑。举例来说,上部电路板组合件可包含围绕旋转轴杆对称地布置的多个转子元件,且下部电路板组合件可包含围绕所述轴杆对称地布置的多个定子元件。驱动器电路可驱动定子元件。使此类转子和定子元件构建到电路板本身上提供优于使用较庞大马达(例如,步进式马达、有刷马达或非集成式无刷马达)的产品的各种优点。

根据一些实施例,一种光测一些实施例距系统包含:轴杆,其具有纵向轴线;第一电路板组合件,其包含定子组合件,所述定子组合件包括围绕轴杆布置在第一电路板组合件的表面上的多个定子元件;第二电路板组合件,其旋转联接到轴杆且与第一电路板组合件隔开并呈相对关系,其中第二电路板组合件包含转子组合件,所述转子组合件包括围绕轴杆布置在第二电路板组合件的表面上的多个转子元件,使得所述多个转子元件与所述多个定子元件对准且隔开;定子驱动器电路,其安置于第二或第一电路板组合件的任一个上且被配置成将驱动信号提供到所述多个定子元件,借此在所述多个转子元件上赋予电磁力来驱动第二电路板组合件围绕轴杆的纵向轴线的旋转;以及光测距装置,其以机械方式联接到第二电路板组合件使得光测距装置随第二电路板组合件旋转。

在一些实施例中,一种光测距系统包含:轴杆;第一电路板组合件,其包含定子组合件,所述定子组合件包括围绕轴杆布置在第一电路板组合件的表面上的多个定子元件;第二电路板组合件,其旋转联接到轴杆,其中第二电路板组合件包含转子组合件,所述转子组合件包括围绕轴杆布置在第二电路板组合件的表面上的多个转子元件,使得所述多个转子元件与所述多个定子元件对准且隔开;光测距装置,其联接以随第二电路板组合件旋转,所述光测距装置包含被配置成将光脉冲传输到周围环境中的对象的光源,以及检测器电路,所述检测器电路被配置成检测从周围环境中的对象反射的光脉冲的反射部分并基于光脉冲的反射部分计算测距数据;以及定子驱动器电路,其安置于第二或第一电路板组合件的任一个上且被配置成将驱动信号提供到所述多个定子元件,借此在所述多个转子元件上赋予电磁力来驱动第二电路板组合件围绕轴杆的旋转。

在一些实施例中,一种光测距系统包含:固定罩壳,其具有光学透明窗和基底;中空轴杆,其安置于所述罩壳内;轴承系统,其联接到中空轴杆;第一电路板组合件,其安置于罩壳内且与垂直于中空轴杆的第一平面平行,所述第一电路板组合件包含定子组合件,所述定子组合件包括围绕轴杆环形地布置在第一电路板组合件的表面上的多个均匀间隔开的定子元件;第二电路板组合件,其安置于罩壳内,平行于第一平面且通过轴承系统旋转联接到轴杆,其中第二电路板组合件包含转子组合件,所述转子组合件包括围绕轴杆环形地布置在第二电路板组合件的表面上的多个均匀间隔开的转子元件,使得所述多个转子元件与所述多个定子元件对准且隔开;光测距装置,其联接以在固定罩壳内随第二电路板组合件旋转,所述光测距装置包含被配置成经由所述窗将光脉冲传输到周围环境中的对象的光源,以及检测器电路,所述检测器电路被配置成检测从周围环境中的所述对象反射的经由所述窗接收的光脉冲的反射部分,且基于光脉冲的反射部分计算测距数据;以及定子驱动器电路,其安置于第二或第一电路板组合件的任一个上且被配置成将驱动信号提供到所述多个定子元件,借此在所述多个转子元件上赋予电磁力以驱动第二电路板组合件和光测距装置围绕轴杆的旋转。

根据一些实施例,一种光测距系统包含:壳体;轴杆,其限定旋转轴线;第一电路板组合件,其以固定关系安置于壳体内且联接到壳体,使得第一电路板组合件沿着垂直于旋转轴线的第一平面对准,所述第一电路板组合件包含安置于第一电路板上的多个第一电路元件;第二电路板组合件,其在壳体内在平行于第一平面的第二平面中与第一电路板组合件隔开且旋转联接到轴杆使得第二电路板组合件围绕旋转轴线旋转,所述第二电路板组合件包含多个第二电路元件,所述多个第二电路元件安置于第二电路板上且与所述第一多个电路元件中的至少一个对准并被配置成与所述第一多个电路元件中的至少一个以无线协作的方式工作;以及光测距装置,其电连接且联接以随第二电路板组合件旋转,所述光测距装置被配置成将光脉冲传输到周围环境中的对象,来检测从周围环境中的所述对象反射的光脉冲的反射部分,并基于光脉冲的反射部分计算测距数据。

在一些实施例中,一种光测距系统包含:罩壳,其具有光学透明窗;轴杆,其限定穿过罩壳的旋转轴线;第一电路板组合件,其安置于罩壳内且固定地联接到罩壳并垂直于旋转轴线对准;第二电路板组合件,其安置于罩壳内且与第一电路组合件隔开并呈相对关系,所述第二电路板组合件可旋转地联接到轴杆;光测距装置,其以固定关系联接到第二电路板组合件使得光测距装置随第二电路板组合件围绕轴杆旋转;环形编码器,其包括安装在第一或第二电路板中的一个上的环形编码器条带以及安装在第一或第二电路板中的另一个上处于朝向环形编码器条带并与环形编码器条带相对的位置处的编码器读取器;无线通信系统,其包括安装到第一电路板的第一环形无线通信组件以及安装到第二电路板处于朝向第一环形无线通信组件并与第一环形无线通信组件相对的位置处的第二环形无线通信组件;以及环形无线功率传递系统,其包括安装到第一电路板的环形无线功率传输器以及安装到第二电路板处于朝向环形无线功率传输器并与环形无线功率传输器相对的位置处的环形无线功率接收器。

在一些实施例中,一种光测距系统包含:罩壳,其具有光学透明窗;轴杆,其限定穿过罩壳的旋转轴线;第一电路板组合件,其安置于罩壳内且固定地联接到罩壳并垂直于旋转轴线对准;第二电路板组合件,其安置于罩壳内且与第一电路组合件隔开并呈相对关系,所述第二电路板组合件可旋转地联接到轴杆;光测距装置,其安装到第二电路板组合件使得光测距装置随第二电路板组合件围绕轴杆旋转,所述光测距装置被配置成将光脉冲传输到周围环境中的对象,以检测从周围环境中的对象反射的光脉冲的反射部分,并基于光脉冲的反射部分计算测距数据;环形编码器,其包括安装在第一或第二电路板中的一个上的环形编码器条带以及安装在第一或第二电路板中的另一个上处于朝向环形编码器条带并与环形编码器条带相对的位置处的编码器读取器;无线通信系统,其包括安装到第一电路板的第一环形无线通信组件以及安装到第二电路板处于朝向第一环形无线通信组件并与第一环形无线通信组件相对的位置处的第二环形无线通信组件;电马达,其包含包括围绕轴杆布置在第一电路板组合件的表面上的多个定子元件的定子组合件,以及包括围绕轴杆布置在第二电路板组合件的表面上的多个转子元件的转子组合件,使得所述多个转子元件安置于朝向所述多个定子元件并与所述多个定子元件相对的位置处;定子驱动器电路,其安置于第二或第一电路板组合件的任一个上且被配置成将驱动信号提供到所述多个定子元件,借此在所述多个转子元件上赋予电磁力来驱动第二电路板组合件围绕轴杆的旋转;以及环形无线功率传递系统,其包括安装到第一电路板的环形无线功率传输器以及安装到第二电路板处于朝向环形无线功率传输器并与环形无线功率传输器相对的位置处的环形无线功率接收器。

根据一些实施例,一种光测距系统包含:轴杆,其具有纵向轴线;光测距装置,其被配置成围绕轴杆的纵向轴线旋转,所述光测距装置包含被配置成将光脉冲传输到周围环境中的对象的光源,以及检测器电路,所述检测器电路被配置成检测从周围环境中的所述对象反射的光脉冲的反射部分并基于光脉冲的反射部分计算测距数据;基底子系统,其不围绕轴杆旋转;以及光学通信子系统,其被配置成提供基底子系统和光测距装置之间的光学通信通道,所述光学通信子系统包含连接到检测器电路的一个或多个转台光学通信组件以及连接到基底子系统的一个或多个基底光学通信组件。

在一些实施例中,一种光测距系统包含:壳体,其具有光学透明窗;中空轴杆,其具有安置于壳体内的纵向轴线;光测距装置,其安置于壳体内且被配置成围绕轴杆的纵向轴线旋转,所述光测距装置包含被配置成经由光学透明窗将光脉冲传输到周围环境中的对象的光源,以及检测器电路,所述检测器电路被配置成检测从周围环境中的所述对象反射的穿过光学透明窗的光脉冲的反射部分且基于光脉冲的反射部分计算测距数据;基底子系统,其安置于壳体内且不围绕轴杆旋转;以及光学通信子系统,其安置于壳体内且被配置成在基底子系统和光测距装置之间提供光学通信通道,所述光学通信子系统包含安置于中空轴杆内的第一光学通道和环形地布置在中空轴杆外部的第二光学通道。

在一些实施例中,一种光测距系统包含:壳体,其具有光学透明窗;中空轴杆,其具有安置于壳体内的纵向轴线;光测距装置,其安置于壳体内且被配置成围绕轴杆的纵向轴线旋转,所述光测距装置包含被配置成经由光学透明窗将光脉冲传输到周围环境中的对象的光源,以及检测器电路,所述检测器电路被配置成检测从周围环境中的所述对象反射的穿过光学透明窗的光脉冲的反射部分且基于光脉冲的反射部分计算测距数据;基底子系统,其安置于壳体内且不围绕轴杆旋转;第一光学通信通道,其被配置成在光测距装置和基底子系统之间经由中空轴杆以光学方式传输数据,所述第一光学通信通道包含联接到联接以随光测距装置旋转的电路的第一光学组件以及联接到安置于基底子系统上的电路的第二光学组件;以及第二环形光学通信通道,其在中空轴杆周围且被配置成在光测距装置和基底子系统之间以光学方式传输数据,所述环形光学通信通道包含联接到联接以随光测距装置旋转的电路的第一环形光学组件以及联接到安置于基底子系统上的电路的第二环形光学组件。

根据一些实施例,一种光测距装置可包含光发射模块和光感测模块。光发射模块可包含被配置成将光脉冲传输到周围环境中的对象的光源。所述光感测模块可包含:透镜壳体;体形透镜系统,其联接到透镜壳体且被配置成接收来自周围环境的光并将所接收光聚焦到焦平面,所述体形透镜系统包括安装于透镜壳体中的第一透镜、第二透镜和第三透镜;其中所述第一透镜、所述第二透镜或所述第一透镜和所述第二透镜为塑料;且其中所述第三透镜为玻璃;光电传感器阵列,其被配置成接收来自体形透镜系统的光并检测从周围环境中的对象反射的光脉冲的反射部分;以及安装件,其使透镜壳体与光电传感器阵列以机械方式联接,其中所述透镜壳体、所述体形透镜系统和所述安装件被配置成在某一温度范围内将来自体形透镜系统的光被动地聚焦到光电传感器阵列上。在一些情况下,所述透镜壳体、所述体形透镜系统和所述安装件被配置成依据温度使透镜系统的焦距与透镜壳体的膨胀系数且与安装件的膨胀系数匹配,使得光在例如-5摄氏度到70摄氏度的温度范围内被动地聚焦到光电传感器阵列上。

在一些实施例中,一种光测距系统包含具有光学透明窗的罩壳、安置于罩壳内的光测距装置,和被配置成计算测距数据的电路。所述光测距装置可包含:光学传输器,其包括体形传输器透镜系统和多个传输器通道,每一通道包含光发射器,所述光发射器被配置成产生窄带光脉冲并将窄带光脉冲经由体形传输器光学件且经由光学透明窗传输到光测距系统外部的场中;以及光接收器,其包括体形接收器透镜系统、透镜壳体和多个微光学件接收器通道,每一微光学件通道包含与体形接收器光学件的焦平面重合的孔隙、孔隙后方的准直透镜、准直透镜后方的光学滤波器,以及光电传感器,所述光电传感器响应于通过孔隙进入准直透镜并穿过滤波器的入射光子。体形接收器透镜系统可包含安装于透镜壳体中的第一透镜、第二透镜和第三透镜;其中第一透镜、第二透镜或第一透镜和第二透镜为塑料;第三透镜为玻璃;且透镜壳体的热膨胀系数(cte)在某一温度范围内与体形接收器透镜系统匹配使得在所述温度范围内焦平面相对于所述多个微光学件接收器通道中的每一光电传感器是稳定的。在一些情况下,所述温度范围为20摄氏度到70摄氏度,且在一些情况下,所述温度范围为-5摄氏度到70摄氏度。

在一些实施例中,提供一种图像感测装置。图像感测装置可包含透镜壳体;体形透镜系统以机械方式联接到透镜壳体且被配置成接收来自周围环境的光并将所接收光聚焦到焦平面。所述体形透镜系统可包含安装于透镜壳体中的第一透镜、第二透镜和第三透镜,其中所述第一透镜、所述第二透镜或所述第一透镜和所述第二透镜为塑料,且其中所述第三透镜为玻璃。图像感测装置可进一步包含被配置成接收来自体形透镜系统的光的光电传感器阵列,以及以机械方式将透镜壳体与光电传感器阵列联接的安装件。透镜壳体的热膨胀系数(cte)可在某一温度范围内与体形透镜系统匹配使得在所述温度范围内焦平面相对于光电传感器阵列是稳定的。在一些情况下,所述温度范围为20摄氏度到70摄氏度,且在一些情况下,所述温度范围为-5摄氏度到70摄氏度。并且,在一些实施例中,安装件的cte与透镜壳体的cte匹配。

*

下文详细描述本发明的这些和其它实施例。此外,本公开的各种实施例的其它方面和优点将从结合附图进行的以下详细描述变得显而易见,附图借助于实例示出所描述的实施例的原理。

附图说明

图1a-1b分别展示根据一些实施例可以在汽车应用中使用的旋转光测距系统和非旋转固态光测距系统;

图2a-2b分别展示根据一些实施例的旋转和固态lidar系统的高级框图;

图3示出根据类似于上文参考图2a描述的实施例的一些实施例的旋转lidar系统300的更详细框图;

图4a-4b展示根据一些实施例用于光测距系统的光传输和检测过程的说明性实例,其着重于形成发射器-传感器通道的布置的发射器阵列和传感器阵列,如上文参考图2所介绍;

图5a-5b展示根据一个或多个实施例的旋转lidar系统500;

图6a-6c展示根据一个或多个实施例的lidar系统的横截面图;

图6d展示根据一个或多个实施例的定子板的俯视图;

图6e展示根据一个或多个实施例的转子板的仰视图;

图6f是根据一些实施例定位在环形铁氧体沟道内的多线圈无线功率接收器的一部分的简化横截面图;

图7展示根据某些实施例的下部电路板组合件的分解视图以示出紧凑型lidar系统的组装过程;

图8a和8b展示根据一些实施例的lidar系统的分解视图;

图9a-9c分别展示根据某些实施例的光测距装置900的透视图、前视图和经缩放前视图;

图10展示根据某些实施例的光测距装置1000的光学框图,其展示rx模块1001和tx模块1003两者的光学系统;

图11a展示根据某些实施例的微光学件封装的俯视图;

图11b展示根据一些实施例的单个微光学件接收器通道的横截面;

图12a-12b展示根据一些实施例的基于spad的检测器的俯视图;

图13a和13b展示根据一些实施例的vcsel芯片传输器的简化俯视图和侧视图;

图14描绘lidar体形光学系统的实施例的简化示意图;

图15a、15b和15c描绘体形光学件透镜组合件的实施例;

图16a-16e描绘透镜组合件的实施例的各种视图;

图17a-17d描绘透镜组合件的透镜的实施例的横截面;以及

图18描绘具有三个透镜的透镜组合件的实施例。

术语

除非另外定义,否则本文中所用的技术和科学术语具有与所属领域普通技术人员通常所理解相同的含义。然而,提供以下定义是为了有助于理解频繁使用的某些术语并且不意图限制本公开的范围。本文所使用的缩写具有其相关技术领域内的传统含义。

术语测距数据可指代可从例如旋转lidar系统的转台组件等激光测距装置传输的任何数据。测距数据的实例包含范围信息(例如,在特定角度(方位角和/或顶点)处到给定目标点的距离)、范围-速率或速度信息(例如,测距数据相对于时间的导数)以及操作信息(例如,传回的信噪比(snr)或信号强度、目标反射性、来自每一像素视场的环境nir水平、包含温度的诊断信息、电压电平等)。在一些实施例中,测距数据可包含来自定位于转台中的rgb相机的rgb信息,例如高速读出相机,比如线扫描相机或热成像器。

术语转台可以指旋转lidar系统的旋转零件或部分。转台组件包含lidar系统的转台部分中的任何旋转组件或电路板,且可包含位于光测距装置中的一个或多个组件和/或位于旋转致动器的旋转电路板上的一个或多个组件。

在旋转lidar系统(在本文中有时被称作“自旋lidar系统”)的上下文中,术语基底可以指旋转lidar系统的非旋转零件或非旋转部分。基底组件包含lidar系统的基底部分中的任何非旋转组件或电路板,且可包含位于基底组合件中的一个或多个组件和/或位于旋转致动器的非旋转电路板上的一个或多个组件。

术语上部和下部指代沿着lidar系统的旋转轴线的组件的定位或相对定位。在一些实施例中,上部组件,也称为转台组件,定位于lidar系统的转台上,而下部组件,也称为基底组件,定位于lidar系统的基底上。

术语环不仅包含圆形形状,而且包含稍微非圆形形状(例如椭圆形),且周向布置在中心轴线周围,包含在圆周处扰动或振荡(例如,波状)。

被称作对称的一个或多个形状可包含完全对称形状以及大体但不完全对称的形状两者。本文中所描述的电子组件的布置可在对称配置中最有效地操作,然而,术语对称并不排除稍微不对称或相对于对称具有略微偏差的那些配置,即使那些配置不会产生最佳操作配置。

术语平行不限于完全平行,而是也包含由于制造变化而大体上平行的那些几何布置和配置,例如在本文中被称作平行的两个元件可在两个元件之间具有-5和5度或-1和1度之间的角度,这取决于所采用的制造容差。

术语垂直不限于完全垂直,而是也包含由于制造变化而大体上垂直的那些几何布置和配置,例如在本文中被称作垂直的两个元件可在两个元件之间具有85和95度之间的角度。

术语光电传感器(或仅仅传感器)指代可将光转换为电信号(例如,模拟电信号或二元电信号)的传感器。雪崩二极管(apd)是光电传感器的一个实例。单个光电传感器可包含多个较小“光电检测器”。因此,多个单光子雪崩二极管(spad)可以是光电传感器的另一实例,其中所述多个spad中的每一个别spad(例如,spad阵列中的每一spad)可称为光电检测器。术语传感器阵列有时可指代包含多个传感器的阵列的传感器芯片。此外,术语像素有时可与光电传感器或传感器互换使用。

术语传输器可以指包含例如led、激光器、vcsel等一个或多个光传输元件的结构。术语传输器还可包含包括传输器阵列(有时被称作发射器阵列)的传输器芯片。

术语体形光学件指代包含一个或多个宏观尺寸的光学件的单个透镜和/或透镜组合件,例如所述光学件具有厘米数量级或更大的直径,例如市售相机镜头和显微镜镜头中使用的那些光学件。在本公开中,术语体形光学件与术语微光学件对比,术语微光学件指代具有约几微米到几毫米的尺寸或更小的个别元件直径的光学元件或光学元件阵列。大体来说,微光学件可针对发射器阵列或检测器阵列的不同发射器和/或不同检测器以不同方式修改光,而体形光学件针对整个阵列修改光。

如本文中所使用,术语图像空间远心光学件模块指代一种光学系统(体形或以其它),其中,在图像平面处,来自透镜的孔隙内的所有(或大体上所有)主射线在指定容差(例如,+/-2度)内“直行”或以零入射角入射到图像平面上。

具体实施方式

根据某些实施例,本文中所公开的方法和系统涉及一种紧凑型光测距和检测(lidar)系统,以及一种紧凑型lidar系统的组装方法。lidar系统可包含模块化光测距装置和任选的高度紧凑且集成的旋转致动器。模块化光测距装置可操作为独立的非旋转固态lidar,或在连接到集成旋转致动器的情况下可操作为旋转lidar的转台的一部分。光测距装置可包含用于照明位于光测距模块周围的场中的对象的光传输模块(有时被称作“光发射模块”),且还包含用于感测照明光脉冲的反射或散射部分以供用于计算3d深度图像的光感测模块。光测距模块还可包含检测器芯片(例如,cmos芯片),其包含光电传感器阵列,其中的每一个可为例如spad阵列。

在一些实施例中,旋转致动器包含上部电路板组合件(在本文中也被称为转台,或旋转电路板组合件)和基底电路板组合件(在本文中也被称为固定电路板组合件)。旋转致动器的各种电路板可在这样的意义上高度集成:lidar系统的许多功能性和/或支持性电子和光学组件可直接安装到旋转致动器的一个或多个板。举例来说,可控制光传输模块的各种发射参数的lidar系统的基底控制器可安装在旋转致动器的基底电路板组合件的板上。此外,功率可借助于也集成到旋转致动器的板上的无线功率传输系统而提供到光测距模块。基底控制器和光测距模块之间(且反之亦然)的通信可借助于光学上行链路通道和光学下行链路通道来启用,其中支持光学上行链路/下行链路通道的电和光学组件也集成到旋转致动器的一个或多个电路板上。

在一些实施例中,这些相同板包含集成到旋转致动器的上部和下部电路板组合件的一个或多个表面上的电马达组件。举例来说,电马达定子可连同其它电组件一起直接结合到旋转致动器的下部电路板组合件的表面,所述其它电组件例如光学上行链路传输器、光学下行链路接收器和无线功率传输器的群组。同样,电马达转子可连同其它电组件一起直接结合到旋转致动器的上部电路板组合件的表面,所述其它电组件例如光学上行链路接收器、光学下行链路传输器、光学或磁性旋转编码器读取器和无线功率接收器的群组。

在一些实施例中,上部电路板组合件可包含一个或多个连接器,其也结合到上部电路板组合件的表面,以将光测距模块连接到上部电路板组合件。此外,旋转致动器还可包含额外计算资源、一个或多个fpga、asic、微处理器等,其可由光测距模块使用以对所获取数据执行数据处理。

考虑到本文中所公开的紧凑型lidar中的高度系统集成,可通过简单地将光测距模块附接到旋转致动器来组装充分运行的系统。不需要单独的电马达模块、单独的通信模块、单独的功率模块等。

在一些实施例中,旋转致动器的架构适用于最佳组装方法。举例来说,系统的架构可使得包含通信组件、电马达组件和无线功率组件的电组件周向且同心地围绕系统的中心轴线布置,乃至与系统的轴线同轴地布置。中心轴线还可与上部电路板组合件或转台的旋转轴线共线。旋转致动器的一个或多个板可包含中心孔,其被配置成接收可附接(直接或间接)到固定罩壳的下部部分或基底的轴杆。在一些实施例中,轴杆限定系统的旋转轴线,且附接到其的一个或多个轴承提供上部电路板组合件相对于下部电路板组合件的旋转移动。

考虑到上述架构,在一些实施例中旋转致动器的组装可简化为将连续板下降到轴杆上的适当位置。因为电组件(例如通信组件、电马达组件和无线功率组件)的子组围绕系统的中心轴线周向布置,所以一旦组装完成这些系统就可有效地操作,而不需要复杂的对准程序。

在一些实施例中,系统采用光传输模块或光感测模块或这两者内采用的热稳定图像空间远心光学件模块。热稳定图像空间远心光学件模块可进行工程设计以具有相对于传输器或传感器芯片在空间中稳定的图像平面,所述传输器或传感器芯片分别包含光传输模块或光感测模块的传输器和/或传感器的阵列。透镜壳体和透镜壳体内的光学元件的热膨胀系数以及相对于温度的折射率改变可挑选为实现热稳定的图像平面。在各种实施例中,光学系统中的个别光学件可为玻璃和/或塑料以提供经济但热稳定的设计。

根据本公开的一些实施例的模块化光测距装置包含一组竖直腔表面发射激光器(vcsel)作为照明源来向场中发射辐射脉冲,且包含单光子雪崩二极管(spad)检测器的阵列作为一组像素(光电传感器)来检测从所述场中的表面反射或散射的辐射。如上所陈述,相比于一些当前可用lidar传感器中使用的apd,spad具有相对低的动态范围。spad固有的低动态范围在某种程度上是归因于spad如何检测光子的物理学-其是所谓的盖革模式装置,针对每一光子检测事件产生呈雪崩电流脉冲的形式的二元电信号(检测到或未检测到光子)。使用vcsel作为发射器且使用spad作为检测器使得能够同时进行多个测量(即,vcsel发射器可同时启动),并且还使得所述组发射器和所述组光电传感器能够各自使用单芯片上的标准cmos工艺来制造,从而极大地简化制造和组装过程。然而,在某些实施例中使用vcsel和spad提出了挑战,本发明的各种实施例克服这些挑战。举例来说,vcsel远不如一些当前可用lidar传感器中使用的激光器强大,且spad远不如一些lidar传感器中使用的检测器有效。为了解决这些挑战,以及由于同时启动多个发射器而产生的挑战,本公开的某些实施例可包含用以增强vcsel发射器的亮度的光学组件以及可与多个spad阵列协同工作的各种光学组件(例如,透镜、滤波器和孔隙层),每一阵列对应于不同光电传感器,如本文所描述。

i.说明性汽车lidar系统

图1a-1b展示根据一些实施例的汽车光测距装置,在本文中也被称为lidar系统。此处仅为了说明起见挑选lidar系统的汽车应用,且本文中所描述的传感器可在例如轮船、飞机、火车等其它类型的车辆中以及在其中3d深度图像为有用的多种其它应用中采用,所述其它应用例如医学成像、测地学、测绘学、考古学、地理学、地质学、地貌学、地震学、林业、大气物理、激光制导、机载激光幅绘图(airbornelaserswathmapping,alsm)和激光测高。根据一些实施例,例如扫描lidar系统100和/或固态lidar系统120等lidar系统可安装在车辆105的顶板上,如图1a和1b中所展示。在其它实施例中,一个或多个lidar传感器可安装在车辆的其它位置上,包含(但不限于)车辆的前面或背面、车辆的侧面和/或车辆的隅角。

图1a中所展示的扫描lidar系统100可采用扫描架构,其中lidar光传输模块102(例如,用于发射激光脉冲的光源)和/或光感测模块104(例如,用于检测反射脉冲以确定到对象的距离的检测器电路)的定向可在外部场或车辆105外部的场景内在一个或多个视场110周围扫描。在扫描架构的情况下,发射的光112可以如所示在周围环境上扫描。举例来说,定位于扫描lidar系统100中的一个或多个光源(例如红外或近红外脉冲ir激光器,未图示)的输出射束可被扫描(例如旋转)以照明车辆周围的场景。在一些实施例中,由旋转箭头115表示的扫描可由机械手段实施,例如通过将光发射器安装到旋转柱或平台。在一些实施例中,旋转可以经由其它机械手段实施,例如通过使用电流计。也可采用基于芯片的转向技术,例如通过使用采用一个或多个基于mems的反射体的微芯片,例如数字微镜面(dmd)装置、数字光处理(dlp)装置等。在一些实施例中,扫描可以经由非机械手段实现,例如通过使用电子信号使一个或多个光学相控阵列转向。

对于固定架构,比如图1b中展示的固态lidar系统120,一个或多个固态lidar子系统(例如,光传输模块122和光感测模块124)可安装到车辆105。每一固态lidar单元可以面对不同方向(在单元之间可能具有部分重叠和/或不重叠的视场)以便捕获比每一单元自身能够捕获的视场更大的复合视场。

在旋转或固定架构的任一个中,场景内的对象可反射从lidar光源发射的光脉冲的部分。一个或多个反射部分随后行进回到lidar系统,且可以被检测器电路检测到。举例来说,反射部分114可由检测器电路104检测到。光传输模块可安置于与光感测模块相同的壳体中。扫描系统和固定系统的方面不是相互排斥的,且因此可组合使用。举例来说,图1b中的个别lidar子系统122和124可采用例如mems振镜等可转向发射器,或整个复合单元可经由机械手段旋转,借此在lidar系统前方扫描整个场景,例如从视场130到视场132。

图2a-2b分别展示根据一些实施例的旋转lidar系统200和固定固态lidar系统230的高级框图。两种系统都采用包含光传输模块212和光感测模块214的光测距装置210。光传输和感测模块212和214可各自分别包含定位于感测和传输模块的输入/输出处的体形光学件215,例如多元件透镜组合件。光传输模块212可进一步包含微光学件阵列和任选的陷波滤波器元件(未图示),其定位于体形光学件215和光发射器电路216之间。在一些实施例中,光发射器电路216包含光源的芯片级阵列,例如砷化铟镓(ingas)衬底上的竖直腔表面发射激光器(vcsel)的阵列。光感测模块214也可包含微光学件阵列和陷波滤波器元件(未图示),其定位于体形光学件215和光检测器电路218之间。在一些实施例中,光检测器电路218可包含光子检测器的芯片级阵列,例如cmos技术中制造的单光子雪崩二极管(spads)的阵列。也可以采用其它检测器技术,例如雪崩光电二极管、ccd图像传感器、cmos光电二极管图像传感器、腔增强型光电检测器、表面增强型光电检测器等。

转向图2a,在旋转lidar系统200中,光测距装置210可电连接到转台电路板组合件222(在本文中也被称为上部电路板组合件或测距电路板组合件)。电路板组合件222可在其连接到光测距装置210的程度上视为测距。如下文在图3中更详细描述,转台电路板组合件222可包含若干电路元件,包含一个或多个处理器和存储器。举例来说,转台电路板组合件222可包含现场可编程门阵列(fpga)和/或被调适成提供特定lidar功能性的一个或多个专用集成电路(asic)。在一些实施例中,光测距装置210可经由多引脚电连接器硬接线到转台电路板组合件222,或可以无线方式例如经由采用光学或rf连接的通信通道连接到转台电路板组合件222。

转台电路板组合件222可安置在基底电路板组合件226正上方。在一些实施例中,基底电路板组合件226可以无线方式传输功率到转台电路板组合件222,以例如为光测距装置210和任何其它相关联电路(例如,asic、fpga、通信电路等)供电。此外,光学、电感和/或电容通信通道可将基底电路板组合件226连接到转台电路板组合件222,借此允许经由来自基底电路板组合件的非接触数据传递控制光测距装置210。

在图2a中展示的实施例中,转台电路板组合件222经由旋转联接器224旋转联接到基底电路板组合件226。旋转联接器224使光测距装置210和转台电路板组合件222能够在lidar系统200的壳体220内旋转完整的360度。光测距装置210的旋转允许系统获取可用于构造装置周围的体积的完整的360视场3d地图的数据。在一些实施例中,基底电路板组合件226可例如借助于机械托架和螺钉(未图示)联接到壳体220,使得基底电路板组合件226保持固定且不相对于壳体220旋转。壳体220可以是防水壳体,其保护光测距装置210和lidar系统200的其它内部组件不受lidar系统200的操作环境的湿气及各种因素影响。

旋转联接器224可在各种实施例中以若干不同方式实施。举例来说,一些实施例可采用轴杆和轴承结构。在一些实施例中,旋转联接器224还包含不仅允许旋转移动而且驱动转台电路板组合件222的旋转移动的旋转致动器的一个或多个组件。举例来说,包含转子元件(例如,永磁体)的布置的电马达转子组合件可直接集成到转台电路板组合件222中,且包含定子元件(例如螺线管线圈)的布置的电马达定子组合件可直接集成到基底电路板组合件226中。在其中一个或多个旋转致动组件集成到基底电路板组合件226和/或转台电路板组合件222中的此类实施例中,不再需要用于旋转致动的单独模块。因此,与采用单独的电马达模块的自旋lidar系统相比,本文中所公开的lidar系统的实施例可具有较紧凑的形状因数和简化得多的组装过程。

图2b是根据一些实施例的固定固态lidar系统230的简化的框图。类似于图2a中展示的旋转lidar系统200,固定固态lidar系统230包含容纳于防水壳体240内的光测距装置210。光测距装置210可直接连接到壳体240内的基底电路板组合件232。因为系统230不旋转光测距装置210,所以不需要单独的旋转转台电路板组合件或旋转联接器。相应地,先前分布在转台电路板组合件222和基底电路板组合件226之间的电路可完全集成到单个基底电路板组合件232中,和/或在与光感测模块214和/或传输模块212相关联的电路之间共享。

在一些实施例中,对于图2a-2b中展示的实施例中的任一个,用于执行一个或多个lidar特定操作(例如,光子时间系列累积,继之以峰值检测和测距数据计算及输出)的硬件和软件/固件可并入到光测距装置210和/或电路板组合件(例如,用于lidar系统200的转台电路板组合件222和/或基底电路板组合件226中,或用于lidar系统230的基底电路板组合件232)中的一个或多个的电路中。举例来说,在一些实施例中,光检测器电路218还可包含集成到与spad阵列相同的衬底上的asic。在此情形下,光测距装置210在这样的意义上来说是模块化的:软件/固件的再编程/重新配置可允许光测距装置210作为旋转lidar系统(比如图2a中展示的lidar系统200)的一部分或作为独立的固态lidar系统(比如图2b中展示的lidar系统230)操作。正如上文已经提到的,可以采用还将允许射束转向而不需要机械旋转致动器的电路(例如,mems、dmd、光学相控阵列等)。相应地,本文中所公开的系统的模块化设计产生可满足用户需求的高度可调适系统,其无总体硬件和机械架构的昂贵且费时的再设计。

ii.详细框图

图3示出根据类似于上文参考图2a描述的实施例的一些实施例的旋转lidar系统300的更详细框图。更确切地说,旋转lidar系统300可任选地采用具有无线数据和功率传输及接收能力的旋转致动器。在一些实施例中,旋转致动器包含集成到旋转电路板的表面上的转子和集成到固定电路板的表面上的定子,且两个板组合件都装备有无线功率和数据传递能力。

图3中展示的旋转lidar系统300包含两个主要模块:下文详细描述的光测距装置320和旋转致动器315。此外,旋转lidar系统300可与用户接口硬件和软件305的一个或多个示例交互。用户接口硬件和软件305的不同示例可变化,且可包含例如具有监视器、键盘、鼠标、cpu和存储器的计算机系统;汽车中的触摸屏;具有触摸屏的手持型装置;或任何其它适当的用户接口。用户接口硬件和软件305可在旋转lidar系统300安装于的对象本地,但也可以是远程操作的系统。举例来说,去往/来自旋转lidar系统300的命令和数据可路由穿过蜂窝网络(lte等)、个域网(蓝牙、zigbee等)、局域网(wifi、ir等)或例如因特网等广域网。

用户接口硬件和软件305可将lidar数据从装置呈现给用户,但也可允许用户以一个或多个命令控制旋转lidar系统300。实例命令可包含激活或解除激活lidar系统、指定光电检测器曝光水平、偏置、取样持续时间和其它操作参数(例如,发射脉冲模式和信号处理)、指定例如亮度等光发射器参数的命令。另外,命令可以允许用户选择用于显示结果的方法。用户接口可显示lidar系统结果,其可包含例如单帧快照图像、恒定更新的视频图像和/或一些或所有像素的其它光测量值的显示,例如环境噪声强度、传回信号强度、经校准目标反射性、目标分类(硬目标、扩散目标、回反射目标)、范围、信噪比、目标径向速度、传回信号时间脉冲宽度、信号偏振、噪声偏振等。在一些实施例中,用户接口硬件和软件305可跟踪对象距车辆的距离(近程),且可能向驾驶者提供警报,或提供此类跟踪信息用于驾驶者的行为的分析。

在一些实施例中,lidar系统可以与车辆控制单元310通信,且可以基于所接收lidar数据修改与车辆的控制相关联的一个或多个参数。举例来说,在完全自主车辆中,lidar系统可以提供汽车周围环境的实时3d图像以辅助导航。在其它情况下,lidar系统可以用作先进驾驶者辅助系统(adas)的一部分或用作安全系统的一部分,其例如可将3d图像数据提供到任何数目的不同系统(例如,自适应巡航控制、自动停车、驾驶者困倦监视、盲点监视、碰撞避免系统等)。当车辆控制单元310可通信地联接到光测距装置320时,可向驾驶者提供警报,或可跟踪和/或显示对象的近程。

光测距装置320包含光感测模块330、光传输模块340和光测距系统控制器350。旋转致动器315包含至少两个电路板组合件:下部电路板组合件360(在本文中也被称为基底子系统)和上部电路板组合件380(在本文中也被称为转台子系统)。下部电路板组合件360可以机械方式安装到罩壳或壳体(未图示)的固定部分,而上部电路板组合件380围绕通常由轴杆(图3中未表示)限定的旋转轴线自由旋转,所述轴杆也安装到罩壳(直接或间接)。光测距装置320可以机械方式附接到可旋转上部电路板组合件380,且因此在壳体内自由旋转。

虽然图3展示光测距装置320和旋转致动器315内的组件的一个特定布置,但在一些实施例中,特定组件可以与所展示不同的方式集成到一个或另一模块中。作为一个实例,测距系统控制器350(其可为例如fpga、asic或更一般的计算装置,比如嵌入式系统或芯片上系统(soc))可直接安装(例如,焊接)到作为上部电路板组合件380的一部分的印刷电路板。换句话说,在一些实施例中,旋转致动器的零件可集成于光测距装置320内,且反之亦然。

旋转致动器315包含若干不同系统,其集成到下部和上部电路板组合件360和380的一个或多个印刷电路板上。举例来说,旋转致动器315可包含无刷电马达组合件、光学通信子系统、无线功率传输子系统和基底控制器。这些系统由数对协作电路元件形成,每一对包含下部电路板组合件360上的一个或多个电路元件与上部电路板组合件380上的一个或多个电路元件协作(例如,具有与之互补的功能)操作。互补功能包含(例如)功率和/或数据通信信号的传输(tx)和接收(rx),如下文更详细地描述。

无刷电马达组合件包含集成到下部电路板组合件360的印刷电路板上的定子组合件362,和集成到上部电路板组合件380的印刷电路板上的转子组合件382。转子组合件382的旋转依据来源于马达驱动器电路364的驱动信号(例如,三相驱动电流)来驱动。在一些实施例中,一个或多个马达控制线将马达驱动器电路连接到定子组合件362的线圈以允许将驱动信号提供到马达定子。此外,马达驱动器电路364可电连接到基底控制器366使得基底控制器366可控制转子组合件的旋转速率和因此光测距装置320的旋转速率(即,帧速率)。

在一些实施例中,转子组合件382可以10-30hz之间的速率旋转。在一些实施例中,转子组合件382可以是无源装置,其包含附接到上部电路板组合件的电路板的一系列永磁体。这些永磁体通过由定子组合件的线圈产生的电磁力(例如,磁力)被吸引或排斥,来驱动上部电路板组合件380相对于下部电路板组合件360的旋转。上部电路板组合件380的旋转定向可由旋转编码器接收器394跟踪,所述旋转编码器接收器可通过检测旋转编码器374上的一个或多个特征的通过来跟踪上部电路板组合件的角位置。可以采用多种不同的旋转编码器技术。在一些实施例中,旋转编码器374直接集成到下部电路板组合件360的电路板的表面上。

旋转致动器310还可包含无线功率系统,其包含在本文中被称作旋转变换器的配置中的无线功率传输器372和无线功率接收器392。从传输器372传输到无线功率接收器392的功率可被光测距装置320和/或需要转台/上层电路板组合件上的功率的任何电路消耗。在一些实施例中,光测距装置320所需的所有功率经由无线功率接收器392提供,且因此不需要比如滑环或基于汞的装置等旋转电联接器,借此增加了总体系统的可靠性并降低了总体系统的成本。

旋转致动器310还可包含光学通信子系统,其包含若干光学传输器(例如,光学传输器378和396)和若干光学接收器(例如,光学接收器376和398),用于旋转致动器315和光测距装置320之间(或去往/来自以机械方式连接到旋转致动器315的上部电路板组合件380的任何其它装置或系统)的双向非接触数据传输。更确切地说,光学通信子系统可包含一组基底光学通信组件,其附接到(例如,焊接到)作为lidar系统300的固定基底的一部分的下部电路板组合件360;且可包含一组转台光学通信组件,其附接到(例如,焊接到)作为lidar系统300的旋转转台的一部分的旋转上部电路板组合件380。这些光学通信组件提供用于将包含控制信号的光学信号提供到光测距装置320的上行链路数据通道,并且还提供用于将包含测距和操作数据的光学信号从光测距装置320提供到基底控制器366、用户接口硬件和软件305和/或车辆控制单元310的下行链路数据通道。

从上部电路板组合件360到下部电路板组合件380的下行链路光学通信通道可形成在光学下行链路传输器396和光学下行链路接收器376之间。光测距装置320可直接连接到上部电路板组合件380,且因此可访问下行链路光学通信通道以将测距和操作数据向下传递到下部电路板组合件360以供进一步使用。在一些实施例中,在光学信号中经由光学下行链路向下传递的数据可包含场中个别点(像素)的范围数据(或可能单个像素和角度的多个范围,例如在雾/雨期间、当透过玻璃窗观看时等等)、方位角和顶点角度数据、传回的信噪比(snr)或信号强度、目标反射性、来自每一像素视场的环境近ir(nir)水平、来自光测距装置的例如温度、电压电平等诊断操作信息。此外,来自连接到旋转致动器的上部电路板380的任何其它系统的数据可经由光学下行链路向下传递。举例来说,来自高速rgb或热相机、线扫描相机等的数据。

来自下部电路板组合件360的上行链路光学通信通道可形成在光学上行链路传输器378和光学上行链路接收器398之间。在一些实施例中,来自基底控制器366的控制信号可经由光学上行链路通信通道被传递到光测距装置320。举例来说,在一些实施例中,基底控制器366可监视装置中的各种温度(如从下行链路通道接收),且可在过热条件的情况下将紧急关机信号经由上行链路通道发送到光测距装置320。在一些实施例中,基底控制器可以是移动计算机,例如采用具有相关联存储器和i/o能力(例如,以太网等)的arm+fpga架构的可编程芯片上系统。

可由光测距装置320通过从光传输模块340传输一个或多个光脉冲到光测距装置周围的视场中的对象而产生测距数据。所传输光的反射部分随后在一些延迟时间之后由光感测模块330检测到。基于延迟时间(通常被称为“飞行时间”),可确定到反射表面的距离。也可采用其它测距方法,例如连续波、多普勒等。

光传输模块340可包含发射器阵列342和发射(tx)光学系统344。发射器阵列342可以是一维或二维传输器阵列,其当与传输光学系统344组合时形成体形成像光学件后方的传输器通道阵列。这些传输器通道可任选地包含用于射束整形、射束转向、亮度增强等的微光学件结构。光传输模块340可进一步包含任选的处理器346和存储器348,但在一些实施例中这些计算资源可并入到测距系统控制器350中。在一些实施例中,可使用脉冲译码技术,例如巴克码(barkercode)等。在这些情况下,存储器348可以存储指示何时应当传输光的脉冲代码。在一个实施例中,脉冲代码存储为存储于存储器中的整数序列。

光感测模块330可包含传感器阵列332和接收器(rx)光学系统334。传感器阵列332可以是一维或二维光电传感器阵列。在一些实施例中,每一光电传感器可包含二元光子检测器(例如,spad等)的集合,而在其它实施例中每一光电传感器可以是线性光电检测器(例如,apd)。接收器光学系统334和传感器阵列332结合在一起可形成如下文更详细地描述的体形成像光学件后方的微光学件接收器通道阵列。每一微光学件接收器通道测量对应于周围体积的相异视场中的图像像素的光。由于光感测模块330和光传输模块340的几何配置,传感器阵列332的每一光电传感器(例如,spad的集合)可对应于发射器阵列342的特定发射器。在替代实施例中,传感器阵列332的每一传感器可对应于发射器阵列342的多个发射器(例如,vcsel的群集)。在又一实施例中,单个大型发射器(例如,激光二极管杆)可在发射器阵列342,可对应于传感器阵列336内的多个传感器。

在一些实施例中,光感测模块330的传感器阵列332可使用例如cmos技术制造为单个衬底上的整体式装置的一部分,其包含光电传感器阵列、用于对来自阵列中的个别光电传感器(或光电传感器群组)的原始信号进行信号处理的处理器336和存储器338。包含传感器阵列332、处理器336和存储器338的整体式结构可制造为专用asic。在一些实施例中,作为接收器光学系统334的一部分的微光学组件也可以是其中传感器阵列332、处理器334和存储器338为零件的整体式结构的一部分。在此类实例中,微光学组件可形成于asic上,使得其变为具有用于接收器通道的每一层的单独衬底层的整体式结构的一部分。举例来说,孔隙层、准直透镜层、光学滤波器层和光电检测器层可堆叠且在切割之前在晶片级处结合到多个asic。可以通过在透明衬底之上布置不透明衬底或者通过以不透明膜涂覆透明衬底来形成孔隙层。在此类实施例中,切割步骤形成多个asic,每一asic具有直接结合到其上的其自身的微光学件结构。作为另一实例,微光学组件可形成为单独的整体式结构,所述单独的整体式结构可在asic经由切割过程与较大晶片分离之后直接结合到asic。以此方式,asic和微光学件结构可结合在一起以形成单个整体式结构。在另外其它实施例中,rx模块330的一个或多个组件可以在整体式结构的外部。举例来说,孔隙层可以被实施为具有销孔的单独金属片。

如上文所提及,处理器336和存储器338(例如,sram)可执行信号处理。作为信号处理的实例,对于每一光电传感器或光电传感器的分组,光感测模块330的存储器338可累计连续时间分区内检测到的光子的计数,且这些时间分区结合在一起可用于再创建反射光脉冲的时间系列(即,光子计数相对于时间)。汇总的光子计数的此时间序列在本文中被称作强度直方图(或仅直方图)。此外,处理器336可实现例如匹配滤波等特定信号处理技术,来帮助恢复对可能归因于spad饱和和淬灭而发生的脉冲形状失真不太敏感的光子时间系列。在一些实施例中,测距系统控制器350的一个或多个组件还可集成到与传感器阵列332、处理器336和存储器338相同的asic中,借此排除对于单独的测距控制器模块的需要。

在一些实施例中,来自处理器336的输出发送到测距系统控制器350以供进一步处理。举例来说,数据可由测距系统控制器350的一个或多个编码器编码,且接着作为数据包经由光学下行链路发送到下部电路板组合件360。测距系统控制器350可以多种方式实现,包含例如通过使用例如fpga等可编程逻辑装置、作为asic或asic的一部分、使用具有存储器354的处理器352,以及上述方式的某一组合。测距系统控制器350可以与基底控制器366协作或者独立于基底控制器而操作(经由预先编程的指令)以通过发送命令来控制光感测模块330,所述命令包含开始和停止光检测和调整光电检测器参数。类似地,测距系统控制器350可通过从基底控制器366发送命令或中继命令来控制光传输模块340,所述命令包含开始和停止光发射控制以及可调整例如发射器温度控制(用于波长调谐)、发射器驱动功率和/或电压等其它光发射器参数的控制。

如果发射器阵列342具有多个独立驱动电路,则可存在可由测距系统控制器350恰当地定序的多个开/关信号。同样,如果发射器阵列包含多个温度控制电路来以不同方式调谐阵列中的不同发射器,则传输器参数可包含多个温度控制信号。在一些实施例中,测距系统控制器350具有一个或多个有线接口或连接器(例如,电路板上的迹线)用于与光感测模块330以及与光传输模块340交换数据。在其它实施例中,测距系统控制器320在例如光学通信链路等无线互连上与光感测模块330和光传输模块340通信。

iii.光传输和检测

图4a和4b描绘根据一些实施例用于光测距系统的光传输和检测过程的说明性实例,其着重于形成发射器-传感器通道的布置的发射器阵列和传感器阵列,如上文参考图2所介绍。图4a描绘收集光测距系统400外部的体积或场景450的三维距离数据的光测距系统400(例如,固态或和/或扫描)。图4b为来自图4a的光测距系统400的放大视图。光测距系统400可表示上文所论述的光测距系统200、220或300中的任一个,以及下文论述的各种光测距装置。图4a和4b是突出显示发射器和传感器之间的关系的高度简化图式,且因此未展示其它组件。

如图4a和4b中所展示,光测距系统400包含光发射器阵列410和光传感器阵列420。光发射器阵列410包含包括例如发射器410(1)和发射器410(9)等个别发射器的光发射器阵列(例如,vcel的阵列等)。光传感器阵列420包含包括例如传感器420(1)和420(9)等个别光电传感器的光电传感器阵列。光电传感器可以是像素化光传感器,其针对每一像素采用一组离散光电检测器,例如单光子雪崩二极管(spad)等。然而,各种实施例可部署其它类型的光电传感器。在一些实施例中,光测距系统400包含一组或多组体形光学元件(未图示),在本文中被称作体形光学件,其放置于光发射器阵列410和/或光传感器阵列420前方用于在所展示的方向中重导向射束。

每一发射器可以从其相邻者稍微偏移,且可以被配置成将光脉冲传输到与其相邻发射器不同的视场中,借此照明仅与所述发射器相关联的相应视场。举例来说,发射器410(1)将照明射束415(1)(由一个或多个光脉冲形成)发射到圆形视场452(其大小为清楚起见而夸示)中。同样,发射器410(9)将照明射束415(9)(也被称为发射器通道)发射到圆形视场454中。虽然图4a和4b中为了避免复杂而未展示,但每一发射器将相应照明射束发射到其对应的视场中,从而使得照明视场的2d阵列(在此实例中二十一个相异视场对应于光发射器阵列410的布置成3x7阵列的二十一个发射器)。

由发射器照明的每一视场可被认为是产生自测距数据的相应3d图像中的像素或光斑。每一发射器通道对于每一发射器可以是相异的且与其它发射器通道不重叠,即,在所述组发射器和所述组非重叠视场之间存在一对一映射。因此,在图4a和4b的实例中,系统可对3d空间中的二十一个相异点进行取样。更密集的点取样可以通过具有更密集的发射器阵列或通过扫描发射器射束随时间的角位置以使得一个发射器可以对空间中的若干点进行取样来实现。

每一传感器可从其相邻者稍微偏移,且类似于上文描述的发射器,每一传感器可看到传感器前方的场景的不同视场。此外,每一传感器的视场与相应发射器通道的视场大体上一致,例如,与其重叠且大小相同。类似于上文描述的发射器,传感器的视场可通过组合件的旋转来扫描。还可使用电流计、mems反射镜或经由某一其它方法实现扫描。

在图4a和4b中,相应发射器-传感器通道之间的距离相对于到视场中的对象的距离而夸示。在实践中,到视场中的对象的距离比对应发射器-传感器通道之间的距离大得多,且因此从发射器到对象的光的路径近似平行于从对象回到传感器的反射光的路径(即,其几乎是“反射回来”)。相应地,存在系统400前方的某一距离范围,在该距离范围内个别传感器和发射器的视场重叠,且正是在此距离范围内系统可最准确地确定深度信息。

因为发射器的视场与其相应传感器的视场重叠,所以每一传感器通道理想地可检测来源于其相应发射器通道的反射照明射束,理想地无串扰,即,未检测到来自其它照明射束的反射光。举例来说,发射器410(1)将照明射束415(1)发射到圆形视场452中,且一些照明射束作为反射射束425(1)从对象460反射。理想地,反射射束425(1)仅由传感器420(1)检测到。因此,发射器410(1)和传感器420(1)共享相同视场(即,视场452)且形成发射器-传感器对。同样,发射器410(9)和传感器420(9)形成发射器-传感器对,共享视场454。在一些实施例中,发射器阵列410和传感器阵列420设计和配置(结合体形光学件)为使得每一发射器-传感器对的视场与其它发射器-传感器对的视场不重叠(超出阈值距离)。

虽然发射器-传感器对在图4a和4b中展示为在其相应阵列中处于相同的相对位置,但任何发射器可与任何传感器配对,这取决于系统中使用的光学件的设计。在一些实施例中,在相同布置的发射器/传感器对的前方具有相同体形成像光学件从设计简单性/成本视角来看可能是有利的。

在测距测量期间,来自分布于lidar系统周围的体积周围的不同视场的反射光由各种传感器收集且处理,从而得到每一相应视场中的任何对象的范围信息。如上文所描述,可使用飞行时间技术,其中光发射器发射精确定时脉冲,且在经过一些时间之后由相应传感器检测脉冲的反射。在发射与检测之间经过的时间以及已知光速随后用以计算到反射表面的距离。在一些实施例中,可以由传感器获得额外信息以确定反射表面的除距离之外的其它性质。举例来说,脉冲的多普勒移位可以由传感器测量且用以计算传感器与反射表面之间的相对速度。

在一些实施例中,lidar系统可由发射器和传感器通道的相对大的2d阵列组成且操作为固态lidar,即,其可获得范围数据的帧而不需要扫描发射器和/或传感器的定向。在其它实施例中,发射器和传感器可被扫描(例如围绕轴线旋转)以确保所述组发射器和传感器的视场对周围体积的完整的360度区(或所述360度区的某一有用分数)进行取样。例如在某一预定义时间周期内从扫描系统收集的范围数据可以随后经过后处理成为一个或多个数据帧,所述数据帧可以随后进一步处理成一个或多个深度图像或3d点云。深度图像和/或3d点云可以进一步处理成地图图块以用于3d绘图和导航应用。

iv.具有集成架构的lidar单元

图5a-5b展示根据本公开的一些实施例采用360扫描架构的旋转lidar系统500。在一些实施例中,lidar系统500可在顺时针或逆时针方向中自旋以观察车辆周围的周围场。系统500可包含固定基底壳体502、光学透明窗504和固定盖506,用于为lidar系统500的内部组件提供保护。窗504可由透明材料制成以允许近ir光的双向传输。固定基底壳体502、窗504和盖506组成耐水或防水的系统壳体或罩壳508,其完全围封lidar系统500的内部组件以保护组件不受各种因素影响。壳体/罩壳508可以表示例如上文相对于图2a所论述的壳体220。在一些实施例中,罩壳可具有大体圆柱形形状,如图5a所示。

在一些实施例中,窗504可完全在罩壳508的周边周围延伸且以固定关系附接到基底壳体502和盖506。在此类实施例中,光测距装置510(图5b中展示)可在罩壳508内在窗504后方旋转。在其它实施例中,窗504可随光测距装置510旋转。图5a中展示的基底壳体502、窗504和固定盖506的配置仅为根据本公开的实施例的罩壳508的一个实例。所属领域的技术人员将认识到,用于lidar系统500的合适的罩壳的其它配置是可能的。作为不同配置的一个实例,盖506可以是窗504的部分。作为另一实例,在其中窗504随光测距装置510旋转的实施例中,窗504可包含由不透明区分离的两个或两个以上单独的窗。举例来说,在一些实施例中,lidar系统500可包含与光学传输器对准的第一窗,以及与光学接收器对准的与第一窗隔开的第二窗。如本文中所使用,“对准”意味着光学传输器或接收器经由窗传输或接收光。

系统500的内部组件(图5a中未图示)可包含旋转致动器和光测距装置,例如相对于图3描述的致动器310和光测距装置320。光测距装置可以与窗504对准并且可通过旋转致动器自旋以在光测距装置在顺时针或逆时针方向中连续地自旋经过360度时将光脉冲射束经由窗504投射到lidar系统500周围的场中。经由窗504从场反射回去的光可接着由光测距装置检测到以确定到场中的对象的距离,如本文所描述。

如下文更详细地描述,旋转lidar系统500可采用高度集成架构,且实现用于内部机械元件和电路的高度紧凑的配置。相应地,根据本公开的一些实施例的lidar系统的总体形状因数可小于许多现有系统,例如其总体积类似于或小于图5a中可见的咖啡杯550的总体积。

图5b展示根据本公开的一些实施例的lidar系统500的实施例,其中外部罩壳/系统壳体508(包含窗504和盖506)已被移除以突出显示集成式堆叠板设计。如图5b所示,旋转lidar系统500包含光测距装置510,所述光测距装置510包含安装在壳体515内的光学传输器512和光学接收器514,所述壳体包含用于光学传输器的第一壳体部分516和用于光学接收器的第二壳体部分518。光测距装置510以机械方式固定地连接到形成堆叠板旋转致动器520的旋转端的印刷电路板522。包含印刷电路板524的堆叠板旋转致动器520的固定侧附接到罩壳的基底部分502。

如下文更详细地描述,lidar系统的实施例拥有高度集成设计,使其特别适于高度紧凑型旋转lidar系统。lidar系统的各种功能元件(机械和电子)集成到堆叠电路板组合件中,所述堆叠电路板组合件包含堆叠于平行布置中的所述一个或多个电路板,如图5b所示,例如电路板522、524、526和528。在一些实施例中,功率系统、电马达、通信系统和lidar控制系统全部集成到堆叠板旋转致动器520的一个或多个堆叠平面电路板中。光测距装置510可借助于一个或多个多引脚连接器等(未图示)方便地附接到顶板522。如下文将详述,板可包含中心轴杆从中通过的中心孔隙。上部板可经由一个或多个轴承附接到轴杆的上部部分。板中的每一个可布置成使其平面表面垂直于轴杆且因此垂直于旋转轴线。由于此配置,组装和维护相对于lidar系统内多个板的定向各不相同的其它系统简单得多。

图6a-6c展示根据本公开的各种实施例的lidar系统600、650和660的横截面图。更确切地说,图6a-6c中展示的个别组件大体对应于上文已经参考图3描述的组件,其中图6a-6c中展示的视图提供根据不同实施例的各种电路元件的几何放置的实例。图6a和6b各自展示采用上部和下部电路板组合件之间的光学通信的实施例,且图6c展示采用上部和下部电路板组合件之间的电感通信的实施例。图6d-6e提供根据一些实施例的个别电路板的表面的视图,以进一步示出若干个别电路元件的同心周向布置。

现参看图6a,可表示lidar系统500的lidar系统600可包含光测距装置602连同(分别)上部和下部电路板组合件610和620,其中上部板组合件610相对于下部板组合件620围绕垂直于板组合件的轴线605旋转。电路板组合件610和620各自为lidar系统600的结构组件,其保持lidar系统的所有或基本上所有组件。所述两件式设计使系统600与许多当前可用的lidar系统相比能够具有减小的尺寸和增加的可靠性,且使得能够以减小的成本制造系统600。

光测距装置602可安装到上部板组合件610中的电路板中的一个从而使光测距装置能够随上部板组合件610旋转,而下部板组合件620可安装到基底604和或侧壁606,其中的每一个为lidar系统600的固定基底的一部分。由位于沿着纵向轴线或旋转605居中的中空轴杆606上的轴承系统607实现上部电路板组合件610和光测距装置602的旋转。

组合件610、620中的每一个可包含彼此以平行关系布置的两个或两个以上堆叠平面电路板。在所展示的特定实施例中,上部组合件610包含转子通信板612和转子控制板614,而下部组合件620包含定子通信板622和定子控制板624。电马达可连同如下文更详细地描述的编码器、无线功率系统和光学通信系统一起直接集成在板组合件上。这些相同元件中的许多或全部还分别集成在图6b和6c中展示的lidar系统650和660的板组合件上。因此,为了简化图6a-6c的描述且避免重复,使用相同参考标号来指示相同元件,且此类相同元件的描述通常不再重复。

lidar系统600的高度集成式堆叠板设计提供一种系统,其相比于针对lidar系统的不同功能元件中的每一个采用许多独立模块的系统具有大大简化的组装过程。在替代实施例中,本公开的lidar系统可包含上部和下部板组合件,其各自为单个电路板,从而更进一步简化了堆叠板设计。举例来说,图6b中展示的lidar系统650包含单个下部电路板652和单个上部电路板654。

虽然图6a-6c中未明确地展示,但一个或多个支持功率电路、驱动/控制电路和通信电路可与下文论述的系统中的每一个配对,且这些支持系统还可集成到旋转致动器的一个或多个电路板上。举例来说,用于将三相驱动电流提供到定子的螺线管的马达驱动器可附接到下部电路板组合件620的电路板的表面。功率驱动和调节电路可与无线功率传输组件配对且安装到上部和/或下部板组合件。例如缓冲器、led/激光器电流驱动器、编码器/解码器、时钟恢复电路、光电检测器驱动和调节电路等数字通信系统的支持电路也可安装到电路板组合件的一个或多个板。将在下文进一步详细论述这些元件中的一些元件,但所属领域的普通技术人员将了解,可以采用标准电路组件的任何数目的布置和配置,而不脱离本公开的范围。在一些实施例中,由于旋转对称的光学上行链路、无线功率旋转变换器、无刷dc马达和旋转编码器的性质的缘故,可以采用这些子系统围绕轴杆的任何同心排序。

v.光学链路

1.集成中心光学下行链路

在一些实施例中,中空轴杆606可不仅充当支撑板组合件中的每一个的中心结构部件,而且充当下行链路光学通信通道(“下行链路通道”)用于将例如测距和/或操作数据等数据从转台组合件提供到定位于下部电路板组合件620(也称为基底系统)中的控制和处理电路。光学下行链路通道可包含光学下行链路传输器626和光学下行链路接收器628,其中的每一个可沿着旋转轴线605居中。光学下行链路传输器626可直接附接(例如,焊接)到上部电路板组合件610的电路板的表面,并且可定位成使得其可经由中空轴杆606中的中心孔或开口传输光学信号。同样,光学下行链路接收器628可直接附接(例如,焊接)到下部电路板组合件620的电路板的表面。光学下行链路接收器628可定位在轴杆的下端上且与光学下行链路传输器626对准,使得其能够接收从光学下行链路传输器626传输的光学信号。

用于旋转致动器的光学下行链路的光学传输器和接收器可以是任何合适的光学发射器或检测器。举例来说,irled、激光二极管、vcsel等可用于光学发射器。同样,任何合适的光检测技术可用于接收器,例如光电二极管等。

2.集成光学上行链路

光学上行链路通道可形成于多个光学上行链路传输器642的周向布置和多个光学上行链路接收器632的互补周向布置之间。如同光学下行链路传输器/接收器对,个别光学上行链路传输器和光学上行链路接收器可分别直接附接(例如,焊接)到下部和上部电路板组合件的相应电路板。安置于下部电路板组合件上的光学通信组件在本文中也被称为“基底光学通信组件”。安置于上部电路板组合件或转台上的光学通信组件在本文中也被称为“转台光学通信组件”。有利的是,中空轴杆606的壁提供上行链路和下行链路通道之间的光学隔离,且因此使串扰最小化。

周向布置的个别发射器和接收器可联接在一起以一起用作单个复合接收器和单个复合传输器。举例来说,随着系统旋转,沿着由光学上行链路接收器的完全布置检测到的上行链路信号的总体光学强度随着个别发射器/检测器彼此通过仅稍微变化。此外,复合传输器中的个别传输器的数目可与复合接收器中的个别接收器的数目相同或不同。

用于旋转致动器的光学上行链路的光学传输器和接收器可以是任何合适的类型的光学发射器或检测器。举例来说,irled、激光二极管、vcsel等的环可用作复合光学传输器。同样,任何合适的类型的光检测技术可用于接收器,例如光电二极管等的环可用作复合光学接收器。此外,用于光学上行链路的光学传输器和接收器可以是与用于下行链路的光学传输器和接收器相同或不同的类型(例如,功率和波长)。

光学上行链路传输器642的周向布置的实例在图6d中展示,图6d示出了固定电路板(例如,图6a的电路板622)的俯视图。在此实例中,存在六(6)个围绕中心孔672周向布置的光学上行链路传输器642。六(6)个传输器围绕圆674均匀间隔开,所述圆的中心位于轴杆的中心(和因此孔672的中心)处且因此与旋转轴线重叠。

旋转电路板(例如,图6a的电路板612或图6b的电路板654)的相对表面包含光学上行链路接收器632的相应周向布置,如图6e所示,图6e示出根据一些实施例的旋转电路板的仰视图。在此实例中,存在围绕中心孔672周向布置的七(7)个光学上行链路接收器。七(7)个接收器围绕圆684均匀间隔,所述圆的中心位于轴杆的中心处且因此与旋转轴线重叠。相应地,随着板旋转,光学上行链路接收器632的布置围绕旋转轴线旋转。因为圆684的半径与圆674的半径相同,所以传输器与接收器对准且旋转仅导致平均信号随时间略微升高和降低,其中频率为转台系统的旋转频率的倍数。可靠的上行链路通道所需的传输器的数目取决于传输器的标称功率以及从每一传输器发射的光锥的发散度两者。理想地,旋转板的前表面处传输器光的光斑大小足够大,使得个别光斑重叠到这样的程度:随着旋转板旋转,接收器的集合所见的平均强度的总体变化低于指定值。

虽然图6d和6e描绘其中光学下行链路通道形成于中空轴杆606内且光学上行链路通道形成于多个光学上行链路传输器的周向布置和安置在轴杆外部的多个光学上行链路接收器的互补周向布置之间的实施例,但在其它实施例中光学通道的其它布置是可能的。举例来说,在一些实施例中,上行链路通道可形成于中空轴杆606内,且下行链路通道可形成在轴杆外部。在另外其它布置中,下行链路和上行链路通道两者可形成在轴杆606内部(例如,使用单独的光导),或下行链路通道和上行链路通道两者可形成在轴杆外部处于光学组件的单独周向布置中。

vi.电感通信链路

返回参看图6c,图6c展示采用上部和下部电路板组合件之间的电感通信系统666、668的实施例。在此实例中,数据上行链路和下行链路由分别安装在下部电路板组合件和上部电路板组合件上的数对线圈666a-e和668a-e提供,如所示。线圈可包含数据线和时钟线两者。每一线圈可嵌入于壳体的单独沟道(例如,环形沟道)内,所述壳体例如本身安装到其相应电路板的表面的上部线圈壳体666和下部线圈壳体668。在一些实施例中,可存在用于多个电感数据线的若干线圈,例如下行链路通道1传输器线圈666b和下行链路通道1接收器线圈668b、下行链路通道2传输器线圈666c和下行链路通道2接收器线圈668c。在一些实施例中,可经由例如下行链路时钟传输线圈666a和下行链路时钟接收器线圈668a等单独线圈对传输下行链路时钟信号。同样,数据上行链路通道可由一对或多对线圈形成,例如由上行链路传输器线圈668d和上行链路接收器可666d形成。类似于下行链路,数据上行链路时钟信号也可具有由一对线圈形成的专用通道,所述对线圈例如上行链路时钟传输器线圈668e和上行链路时钟接收器线圈666e。

在一些实施例中,电感通信链路的使用可相对于光学配置提供若干优点,包含:(1)用较简单且较容易构造的实心轴杆665替换中空轴杆606;(2)在一些情况下,电感线圈布置可需要对机械对准不太严格的容差且因此具有较低制造成本;(3)用于在板之间传递多个信息通道的更容易的布置;(4)可实现传递时钟连同数据,这排除需要时钟和数据恢复(cdr)芯片;(5)可允许通过提供多通道(平行)数据传输线路布置来缩放带宽;以及(6)通过在板之间分布单独的时钟信号,可实现下部板组合件(定子)和上部板组合件/光测距单元(转子)之间的确定性定时行为。

虽然图6c展示具有五个线圈对的实施例,但可实施任何数目的线圈对,而不脱离本公开的范围。举例来说,可实施具有仅一个数据上行链路通道和一个下行链路通道的两个线圈对配置。在此情况下,可经由上行链路通道提供时钟信号,且下行链路时钟可从此上行链路时钟信号导出。在其它实施例中,可以采用三个线圈对,一个用于上行链路数据,一个用于下行链路数据,且一个用于上行链路时钟信号,再次所述下行链路时钟信号从上行链路时钟信号导出。提供上行链路和下行链路时钟信号通道两者的四个线圈对配置也是可能的。除所有上述方案之外,还可以采用任何数目的数据通道,而不脱离本公开的范围。

vii.集成电马达

根据某些实施例,电旋转马达可直接集成到电路板上。马达可具有“扁平”或“轴向”设计,其中转子板上的平面转子组合件与相对定子板上的定子组合件相对。电马达的定子和转子组合件可集成到旋转致动器608的板上,即,电马达的元件是印刷电路板的表面上的许多组件之一,且因此lidar系统600不需要单独的马达模块。举例来说,返回参看图6d,定子组合件644可包含例如竖直定向的螺线管(其纵向轴线垂直于板的表面)等多个定子元件644(i)的环形布置,所述定子元件附连(例如,使用粘合剂)到下部电路板组合件620的板(例如,板622)或附连到软磁芯,该软磁芯接着附连到下部电路板组合件620。定子元件的实例在图6d的俯视图中展示。每一定子元件644(i)可包含缠绕在例如铁氧体等磁性材料的芯部644b周围的螺线管线圈644a。线圈定向成使得退出螺线管的磁场大体上在大体上垂直于电路板的平面的方向上定向。在图6d中展示的实施例中,定子组合件644包含彼此均匀间隔开的十八(18)个个别定子元件644(i),但本公开的实施例不限于具有任何特定数目的定子元件的定子组合件,且其它实施例可包含更少或更多的个别定子元件644(i)。举例来说,在一些实施例中,定子组合件644包含环形布置中的至少12个个别定子元件644(i)。并且,在一些实施例中,定子组合件644中的个别定子元件644(i)的数目为三的倍数,且马达驱动器电路和控制器(图6d中未图示)将三相交替信号提供到定子组合件644以控制板622的旋转速率和因此光测距装置602的旋转速率。

定位成与马达定子组合件644直接相对且附接到上部电路板组合件610的板的是马达转子组合件634。在一些实施例中,马达转子组合件634可以是无源元件,其包含永磁体634(i)的环形布置,其中磁极按交替图案布置以循序地排斥和吸引定子组合件的各种螺线管线圈的开口,如图6e中展示的板视图中更详细地展示。因此,如图6e所示,每一个别磁体634a的磁极可布置成与其邻近磁体634b相对,且每一个别磁体634b的磁极可布置成与其邻近磁体634a相对。此外,虽然图6e中展示的定子组合件644的实施例包含彼此均匀间隔开的二十四(24)个个别磁体634(i),但本公开的实施例不限于具有任何特定数目的元件的转子组合件,且其它实施例可包含更少或更多的个别磁体634(i)。此外,如图6d和6e中可以看出,马达定子组合件644和马达转子组合件634可具有总体圆环形状,其中定子和转子圆两者具有相同的半径和中心位置(例如,两个环可在轴杆上居中)。

虽然图6d和6e中展示的实施例采用作为永磁体的转子元件和作为螺线管线圈的定子元件,但也可采用相反的配置,而不脱离本公开的范围。举例来说,螺线管可以用作转子元件且永磁体可以用作定子元件,在此情况下,到定子元件的功率可由下文描述的无线功率传输系统提供。此外,代替于将永磁体用作转子/定子元件,可在某些实施例中采用电磁体。得到本公开的益处的普通技术人员将了解,可以采用pcb安装式无刷dc马达的任何实施方案,举例来说,可以采用螺线管线圈和永久磁体元件的任何非接触式配置,且可以采用实施基本硬件的旋转运动的任何驱动方案,而不脱离本公开的范围。

viii.集成无线功率传输系统

为了将功率提供到连接到旋转上部电路板组合件610的电路元件,旋转致动器608包含无线功率系统,在本文中也被称为旋转变换器。无线功率系统包含包括无线功率传输器648的无线功率传输子系统,和包括无线功率接收器638的无线功率接收子系统。无线功率传输器648可以是呈圆形环路天线的形式的传输器线圈(例如,单匝或多匝线圈),其附接到例如如图6d中展示的下部电路板组合件620的电路板(例如,板622)的表面。同样,无线功率接收器638可以是呈圆形环路天线的形式的接收器线圈(例如,单匝或多匝线圈),其附接到如图6e所示的上部电路板组合件610的电路板(例如,板612)的表面。无线功率传输器648和无线功率接收器638两者的中心定位于中空轴杆606的中心处,且因此与光学编码器环、电马达组合件和光学上行链路接收器/传输器同心。有利的是,无线功率传输器和接收器可定位于板622和612的最外区处以使圆形环路的面积(且因此电感)最大化,这使功率传递效率最大化且有利地阻止来自环境或lidar系统的内部的光到达光学编码器、上行链路或下行链路。

在一些实施例中,无线功率传输器648和无线功率接收器638可放置在其相应板的环形区内,所述环形区的壁和底部由例如铁氧体等磁性材料形成。举例来说,图6e展示安置于由铁氧体壁686和688(图6a-6c中未图示)和被遮挡的铁氧体底部形成的环形区内的无线功率接收器638。铁氧体材料的此布置在图6f中描绘,图6f是定位在由铁氧体壁686、688和底部铁氧体壁690限定的环形通道内的多线圈无线功率接收器638的一部分的简化横截面图。图6f中展示的布置有助于为传输器和接收器之间的磁场形成通道来改进功率传递效率并减少从系统泄漏的电磁辐射。

ix.集成光学编码器

旋转致动器608进一步包含集成光学编码器组合件,其允许读出上部电路板组合件610相对于下部电路板组合件620的角位置。光学编码器组合件包含图案化环形光学编码器646和旋转编码器检测器636,用于通过(例如)检测随着系统旋转通过旋转编码器检测器636的图案的数目并对所述数目进行计数来读出组合件的角位置。在某些实施例中,旋转编码器检测器636可包含照明装置,例如led和检测器,例如用于对环形光学编码器的图案化表面进行照明和检测的光电二极管或成像检测器。在一些实施例中,环形光学编码器可包含开始代码,其在环形上的唯一位置处发生或提供绝对编码图案,借此实现绝对角定向测量。在一些实施例中,编码器系统本质上为磁性的而非光学的,且依赖于类似地定位的磁性编码器条带和磁性编码器读取器。

在一些实施例中,环形光学编码器646可附接到下部电路板组合件620的电路板(例如,板622)的表面,且旋转编码器检测器636可附接到上部电路板组合件610的表面(例如,板612),如此处展示,或反之亦然。无关于其放置在哪一板上,环形光学编码器646可被布置成使其中心处于中空轴杆606的中心处,且因此与如例如图6d中所展示的电马达组合件和光学上行链路接收器/传输器两者同心。在一些实施例中,旋转编码器检测器636定位于旋转电路板上,在环形光学编码器646上方的任何地方,例如如图6e所示。

有利的是,编码器组合件可定位于无线功率传输系统和电马达组合件之间,以使编码器检测器和光学上行链路系统的传输器之间的光学隔离最大化。如图6a的实例中所展示,在一些实施例中,环形光学编码器646可在旋转致动器606的定子侧上,而旋转编码器检测器636在转子侧上。虽然这是旋转致动器的非标准配置,但此配置对于lidar应用是有利的。举例来说,通过以此方式移除旋转编码器检测器636和光测距装置602之间的旋转连接,可实施两个系统之间的低等待时间连接的实施方案。在lidar应用中,低等待时间连接对于快速取得旋转编码器检测器636的角位置测量值且使当前测距信息与转子的当前角位置相关以增加空间准确性可能是重要的。

x.组装方法

图7-8展示根据某些实施例的lidar系统的分解视图以示出组装过程。图7示出下部电路板组合件(在本文中也被称为基底组合件)的机械组装。图8示出上部电路板组合件的机械组装及其到下部电路板组合件和光测距装置两者的附接,借此形成完全lidar系统。

1.组装下部电路板组合件

图7展示根据某些实施例的下部电路板组合件700的分解视图以示出紧凑型lidar系统的组装过程。在图7中展示的实施例中,下部电路板组合件700具有类似于上文参考图6a描述的两个板配置。确切地说,下部电路板组合件700包含第一和第二子板,在本文中被称作基底控制板720和定子板730。在一些实施例中,基底控制板720和定子板730分别对应于板643和板641,如图6a所示。

下部电路板组合件700的组装可以基底控制板720借助于螺钉728以机械方式附接到基底壳体单元710开始。如上文已经参考图3和6a描述,基底控制板可包含若干电路元件,包含基底控制器,类似于基底控制器366。用于光学通信系统、无线功率传输系统和旋转编码器系统的元件的支持电路(例如驱动器)也可包含在基底控制板上。为了实现光学下行链路通信通道,光学下行链路接收器722可安装到(例如,焊接到)基底控制板720的上表面,在板的中心区中,如上文参考图6a所描述。

在一些实施例中(例如,如上文参考图6b所描述),光学下行链路接收器722和其它支持电路元件直接集成到定子板730上,借此排除需要单独的基底控制板720。在此情况下,下部电路板组合件700的组装可通过将热扩散元件725直接附接到基底710来开始,或在不采用基底或热扩散元件725的情况下,组装可通过安装定子板730来开始。

在基底控制板720附接到基底710之后,轴杆715可使用螺钉706附接到基底控制板720。在一些实施例中,轴杆715可经由轴承系统(下文在图8a和8b中更详细地展示)直接附接到基底710以改进热量从上部电路板组合件到基底710的热传导。如上文参考图6a-6b所描述,轴杆715可包含穿过其长度的中心孔716,从而提供光学下行链路通道的开放光学路径。如此,轴杆715可直接放置在大体位于基底710的中心附近的光学下行链路接收器722的顶部上。在一些实施例中,无关于基底控制板712或基底710的外圆周的形状,轴杆715限定系统的旋转轴线705。因此,轴杆715的位置不必直接处于基底控制板720的中心或基底710的中心。

在轴杆715附接到基底控制板710之后,热扩散元件725可通过一个或多个螺钉716附接到基底控制板720。在一些实施例中,热扩散元件725可由具有高热导率的材料(例如,铝等)制成。此外,可存在热扩散元件725和板之间的一个或多个中间热泡沫衬垫以在提供导热路径的同时防止电短路。在一些实施例中,热扩散元件725与定子板730的下表面的一个或多个部分和基底控制板720的上表面的一个或多个部分进行热接触,借此提供热路径用于使来自这些板的电路元件的集中热量在板之间更均匀地分布。在其周边上,热扩散元件725还可与基底710的侧部进行热接触,且因此提供改进的热路径用于使热量从板传导到基底710且最终离开系统。

在固定热扩散元件725之后,定子板730可借助于螺钉736附接。在一些实施例中,定子板730可借助于一个或多个多引脚电连接器(例如,下部连接器724和726)电连接到基底控制板720。在一些实施例中,通过在定子板730和基底控制板720之间施加机械连接压力(例如,通过在其已附接到基底710之后将定子板按压到基底控制板上)来作出板之间的物理连接。可在系统的寿命期间通过用于将定子板730固定到基底控制板720的螺钉736来维持连接压力。

一旦组装且固定到基底710,一个或多个任选彩色相机732就可定位在定子板730的周边周围以具有出自基底710穿过一个或多个成像孔隙712的透明视觉路径,所述一个或多个成像孔隙在一些实施例中可以是透明孔隙或可含有一个或多个光学元件来帮助成像。在其它实施例中,彩色相机732可直接安装到基底710而非安装到定子板730。彩色相机732使得由lidar系统累积的lidar数据能够由例如静止帧和/或视频等彩色成像数据补充,如标题为“以色彩扩增全景lidar结果(augmentingpanoramiclidarresultswithcolor)”的第15/980,509号美国申请中所描述,所述美国申请出于所有目的以全文引用的方式并入本文中。

2.组装上部电路板组合件且附接到下部电路板组合件

图8a是根据本公开的一些实施例的紧凑型lidar系统800的分解视图以示出lidar系统的组装过程。lidar系统800可以是例如图5a中展示的lidar系统500。lidar系统800包含上文关于图7所描述的下部电路板组合件700、上部电路板组合件810、光测距装置820和罩壳830。如图8a所示,lidar系统800包含上部电路板组合件8,所述。

如图8a所示,上部电路板组合件810具有类似于上文参考图6a描述的两个板配置,且包含测距装置控制板840和转子板850。在一些实施例中,测距装置控制板850和转子板730分别对应于上文参考图6a描述的定子控制板624和转子控制板614。

转子板850包含图8b中展示的轴承组合件860,图8b为转子板850的分解视图。轴承组合件860包含轴承862和864,其插入到t形轴承壳体865的任一端中.t形轴承壳体865可接着利用螺钉866附接到转子板850。

可通过在轴杆715上方配合t形轴承壳体865的中心部分而将转子板850放置在组装好的下部电路板组合件700的顶部上。圆形螺帽852可接着配合到t形轴承壳体86的顶部表面中的圆形中心凹口854中且旋拧到轴杆715的顶部上以将转子板850牢固地附接到下部电路板组合件700。如上文所论述,归因于轴杆715和轴承862和864之间作出的旋转联接,转子板850能够相对于下部电路板组合件700旋转。

可接着通过将向下压力施加到测距装置控制板840,将测距装置控制板840接合到转子板850。为了提供测距装置控制板840和转子板850之间的电连接,一个或多个电连接器可附接到(例如,焊接到)测距装置控制板840(图8a中不可见)的下表面和转子板850(例如,连接器856)的上表面。测距装置控制板840可接着使用螺钉846固定到转子板850。

3.将激光测距装置附接到旋转致动器

一旦上部电路板组合件已组装好并固定到下部电路板组合件,光测距装置820就可电连接到测距装置控制板840的上表面,这将光测距装置以机械方式连接到t形轴承壳体865。光测距装置820包含tx模块822和rx模块824,其中的每一个可具有专用电连接器,所述专用电连接器与安置于光测距装置控制板840的上表面上的相应连接器844和846配对。如同系统中的其它板,将光测距装置820连接到组装好的系统的其余部分可通过将按压力施加到组件来实现。一旦作出连接,就可如所示通过安装在光测距装置820的任一侧上的螺钉826维持按压力。此外,u形托架828可利用额外的螺钉826固定到光测距装置820以为组合件提供进一步结构。

一旦所有内部组件组装好,就可在整个组装期间摘下罩壳830且例如使用一个或多个螺钉以及粘合剂(如果需要)附连到基底700,以实现较稳固的密封。罩壳830可包含如上文相对于图5所描述的光学透明窗,其使来自tx模块822的激光脉冲能够从lidar系统投射到周围环境中,且使从脉冲反射和散射的光能够由lidar系统经由rx模块824接收。

在上文描述的组装过程中,仅为了举例而公开螺钉和托架的各种布置。紧凑型lidar系统的实施例不需要采用等同于图7-8中展示的螺钉布置的螺钉布置,且可使用包含粘合剂、可变形销或闩锁、铆钉或焊缝等任何数目、布置和类型的紧固件,而不脱离本公开的范围。

xi.光学件和光电元件

图9a-9c分别展示根据某些实施例的光测距装置900的透视图、前视图和经缩放前视图。光测距装置900可对应于上文参考图1-6描述的实施例,例如上文参考图3描述的光测距装置320或相对于图5描述的光测距装置510。光测距装置900包含两个主要模块:在包含例如传输器透镜管912和检测器透镜管922等两个透镜管的共同壳体或安装件905内彼此间隔开的光传输(tx)模块910和光感测(rx)模块920。光tx模块和光rx模块各自包含体形光学件模块(未图示),其例如通过将体形光学件模块滑动到适当的透镜管中而定位于其相应的传感器/发射器前方。体形光学件模块在下文更详细地描述。在传输侧,位于tx侧体形光学件模块后方的是(任选地)tx侧微光学件组合件。微光学件组合件的细节在下文参考图10-11陈述。在任选的传输侧微光学件组合件后方的是发射器阵列914,例如制造于ingaas上的整体式单芯片nirvscel阵列等。在检测器侧,位于rx侧体形光学件模块后方的是rx侧微光学件组合件,也在下文参考图10-11更详细地描述。在rx侧微光学件组合件后方的是单芯片检测器阵列和asic组合924,例如基于cmos工艺制造的整体式单芯片nirspad阵列等。

rx模块920和tx模块910两者分别由电路板926和916背衬,所述电路板包含用于光测距装置的额外支持电路,例如电压调节器、vcsel电流驱动器等。举例来说,电路板926可包含用于对来自spad以包含在时间分区的直方图中的信号进行计数的电路,所述时间分区可由时/数转换器指定。电路板926还可包含匹配滤波用于分析直方图以确定接收时间。在一些实施例中,例如fpga等可编程计算元件(例如,用以执行高级滤波,例如内插)可以操作方式连接到rx模块920。

虽然图9a-9b中未展示,但fpga可位于上文描述的旋转致动器的上部板组合件的一个或多个板上,所述一个或多个板包含例如无刷马达的转子半部、旋转变换器功率链路的接收侧、旋转光学上行链路的接收侧,以及旋转光学下行链路的传输侧。这些元件结合在一起在本文中被称作lidar系统的转台组合件。在某些实施例中,转台组合件可以1hz到30hz的频率自旋,从而以固定角间隔进行范围测量。在一个实施例中,对于任何给定完全旋转(“帧”),可产生64x2048分辨率深度图像,但用户可通过改变装置操作参数来选择其它分辨率。在一些实施例中,lidar系统可获取每秒2,621,440个点(范围测量)。

1.用于tx和rx模块的光学系统

图10展示根据本公开的一些实施例的光测距装置1000的光学框图。如图10所示,光测距装置1000包含光传输(tx)模块1010和光感测(rx)模块1040。光传输模块1010可表示tx模块910,而光感测模块1040可表示rx模块920。本公开的实施例不限于图10中展示的特定光学配置。在其它实施例中,光传输模块1010和光感测模块1040可包含更少、更多或不同的光学组件。光传输模块1010和光感测模块1040的其它配置的非限制性实例在以下美国申请中陈述:2018年5月14日提交的标题为“具有亮度增强的光学成像传输器(opticalimagingtransmitterwithbrightnessenhancement)”的第15/979,235号美国申请,以及2018年5月14日提交的标题为“具有在固定窗后方对准的微光学件的自旋lidar单元(spinninglidarunitwithmicro-opticsalignedbehindstationarywindow)”的第15/979,266号美国申请,所述美国申请中的每一个的公开内容出于所有目的以全文引用的方式并入本文中。

可在如上文参考例如图5a-5b所描述的本文中所公开的紧凑型lidar系统内采用光测距装置1000的实施例。tx模块1010提供lidar系统周围的区域中的对象的有效照明,其方式是例如将例如具有例如2nm、1nm、0.5nm、0.25nm或更小的谱宽的nir光等窄带光的脉冲传输到一个或多个视场中,如上文在图1a-1b和4中所展示。rx模块1040检测由场景中的对象反射的所传输的窄带光的反射部分。

如图10所示,tx模块1010可包含tx侧微光学件封装1020和体形光学元件1030。tx侧微光学件封装1020包含多个光发射器1022,且任选地包含微透镜层1024和孔隙层1026。发射器1022可布置于例如加框区中展示的通道1025等传输器通道的一维或二维阵列中。传输器通道中的每一个具有能够发射窄带光的一个或多个光发射器1022(例如nirvcsel等),以及任选地来自透镜层1024的微透镜和来自孔隙层1026的孔隙。

从传输器中的每一个发射的光随着其接近tx侧微光学件透镜层1024的微光学件中的一个而发散。来自微透镜层1024的微透镜捕获发散光且将其再聚焦到与孔隙层1026中的孔隙重合的焦平面,所述孔隙层包含位置对应于微光学件阵列和发射器阵列的孔隙阵列。孔隙阵列1026可减少系统中的串扰。在退出微透镜之后,聚焦的光再次呈锥体形式发散,接着与tx侧体形成像光学件模块1030相遇。在下文更详细地论述tx侧体形成像光学件模块1030的细节。

在一些实施例中,微透镜层1024和tx侧体形成像光学件模块1030之间的分隔等于其焦距的总和,使得孔隙阵列1026处聚焦的光呈现为tx侧体形成像光学件模块1030的输出处的准直光,每一准直射线束以不同角度退出tx侧体形成像光学件模块1030。相应地,来自每一发射器的光导向装置前方的不同视场。在一些实施例中,tx侧体形成像光学件1030在透镜的vcsel侧上,即在系统的射线图中为远心的,进入体形成像光学件1030的孔隙内的任何地方的所有主射线彼此平行地行进离开透镜,且以大体上垂直于vcsel(图像)平面的入射角与vcsel(图像)平面相交。在此配置中,vcsel阵列有利地充当远心源,即,光学件捕获由发射器阵列产生的大体上全部光,甚至从阵列的外边缘上的发射器发射的光。如果没有所述远心设计,由外部发射器捕获的光可能由于其高度倾斜的入射角而以不合需要的方式减少、散射或折射。

rx模块1040包含rx侧体形成像光学件模块1060和rx侧微光学件封装1050。rx侧微光学件封装1050具有与tx侧微光学件封装1020匹配的一维或二维阵列布置,具有用于每一相应微光学件传输器通道1025的微光学件接收器通道1055。rx侧微光学件封装1050包含rx侧孔隙阵列层1056、rx侧微光学件透镜层1054、窄带光学滤波器层1028和传感器阵列层1052。从场中的对象反射出去的所发射光的部分,展示为光线1005,从多个方向进入rx侧体形成像光学件模块1060。rx侧体形成像光学件模块1060使光线聚焦在与rx侧孔隙阵列层1056重合的平面处。聚焦的光接着由rx侧微光学件透镜层1054的微透镜捕获,且以准直方式导向传感器阵列层1052(即,具有小于十度的发散半角)。

在一些实施例中,传感器阵列层1052包含光传感器的1d或2d阵列,或例如spad等光传感器的群组的一维或二维阵列。在一些实施例中,所述阵列中的每一传感器或传感器群组对应于发射器模块和因此测距数据中的“像素”。

在一些实施例中,为了移除杂散背景光,窄带光学滤波器层1028可安置于层状结构内,例如在微光学件阵列和传感器阵列层1052之间。窄带光学滤波器层1028的通带可挑选成与发射器的中心波长对应,且通带的宽度可足够宽以适应跨越发射器阵列的输出波长的任何变化。在一些实施例中,在期望非常窄的通带的情况下,控制系统可个别地或整体地使发射器的波长稳定。在一些实施例中,在期望非常窄的通带的情况下,通过滤波器层1028的光的准直角必须严格地控制使得不会发生入射角移位(如薄膜干扰滤波器中常见的);准直角主要由rx侧孔隙阵列层1056中的孔隙的大小、rx侧微光学件透镜层1054中的透镜的焦距、rx侧孔隙阵列层1056和rx侧微光学件透镜层1054之间的相对定位,以及rx侧微光学件透镜层1054的表面质量和形状精度来控制。在一些实施例中,窄带光学滤波器层1028是跨越传感器的整个阵列的连续平面层。在其它实施例中,窄带光学滤波器层1028可制造为与传感器阵列层1052的像素几何形状对应的微光学元件阵列。

如同tx侧,rx模块1040的个别元件形成例如接收器通道1055等微光学件接收器通道。根据某些实施例,微光学件和接收器的阵列可具有分层整体式结构。每一微光学件接收器通道1055测量针对传感器阵列层1052中的不同像素的光,即,rx模块1040的光学件用以将从不同角度进入模块的平行射线束映射到传感器阵列层1052上的不同的相应空间位置。在一些实施例中,体形成像光学件模块1060在系统的检测器侧上为远心的以避免图像平面中的非理想性因素(按类似于tx侧的方式),如上文所描述。

在一些实施例中,如由微光学件透镜层1054、窄带光学滤波器层1028和rx侧孔隙阵列层1056之间的协作形成的微光学件接收器通道提供传感器阵列层上的不同像素之间的增加的隔离。这是有利的,因为在一些情况下,例如当发射器光从场中的强反射体(例如,停车标志)反射时,每一通道的rx侧的光子通量可能相当大,从而使系统对串扰和模糊敏感(即来自一个通道的入射光可能如此明亮而致使其可被相邻通道检测到)。模糊问题的一个解决方案是,采用复杂的时间多路复用方案使得在任何给定时间仅触发一个发射器-检测器对(或发射器-检测器对的谨慎挑选的群组),因此消除串扰的风险。此布置需要额外定时电子器件以及多路复用软件和硬件,这增加了系统的额外成本和复杂性。此外,时间多路复用是一种效率低下的数据收集方法,因为每一接收器发射器对必须连续循序地激活,借此增加作为整体的阵列的总体获取时间。有利的是,rx侧微光学件组合件的设计使串扰减少到这样的程度:不需要时间多路复用和循序激活,即,可以同时采用所有通道来以类似于快闪lidar系统的方式并行地收集数据点。

用于rx模块1040和tx模块1010的微光学系统的设计有利地实现上文参考图3描述的概念lidar布置,其中每一传输器元件与传感器元件配对,使得传感器元件仅从传输器照明的视场检视光。视场的此1:1配对帮助消除检测器中来自邻近或相邻像素的串扰。额外微光学孔隙层也有助于消除串扰。窄带滤波器层有助于移除背景光,这可促成杂散信号检测,最终产生测距误差。

2.微光学件

图11a展示根据某些实施例的微光学件封装1100的简化俯视图。微光学件封装1100可施加于光测距装置的传输器侧或检测器侧的任一个或这两者上,且包含多个通道1102。举例来说,如果实施于接收器侧上,则每一通道1102将对应于单个微光学接收器通道,例如通道1055。类似地,如果实施于发射器侧上,则每一通道1102将对应于单个传输器通道,例如通道1025。在图11a中展示的实例中,微光学通道布置为m×n交错阵列,例如布置于16×4阵列中。作为一实例,如果图11a表示接收器通道,则对于0.500mm的接收器通道大小(直径),所示出的布局可实施于8.000mm乘2.000mm大小的芯片中。

其它阵列模式是可能的,而不脱离本公开的范围。举例来说,代替于交错阵列,可以采用以下形状的阵列中的任一个:正方形阵列、1d直线阵列(m×1)、扭曲线性(m×1)阵列、扭曲矩形m×n阵列,或具有任何任意模式的阵列。如本文所使用,术语“扭曲”指代其中接收器通道之间的间隔为不均匀的实施例。举例来说,中心附近的接收器通道间隔为较靠近在一起,而外部通道隔开较远。扭曲布局具有能够允许校正透镜的失真曲线的优点(即,接收器通道视场之间的角在对象空间中均匀间隔开)。

图11b展示根据一些实施例的单个微光学件接收器通道1120的横截面,所述单个微光学件接收器通道可表示例如图10中展示的接收器通道1055。接收器通道1120用以接受含有广波长范围的输入光锥,滤出操作波长处居中的那些波长的除了一个以外的所有窄带,且允许像素(光电传感器)1171仅检测或大体上仅检测波长的前述窄带内的光子。本公开的实施例不限于接收器通道的任何特定配置,且通道1120仅为可被实施为接收器通道1055的接收器通道的一个实例。

在一些实施例中,接收器通道1132包含输入孔隙层1140,其包含光学透明孔隙1144和光学不透明光阑区1146。孔隙1144被配置成限定当放置在例如体形接收光学件1060等成像光学件的焦平面处时的窄视场。如本文中所使用,术语“光学透明”指代允许大多数或所有入射光通过的材料。如本文中所使用,术语“光学不透明”指代允许极少光或不允许光通过的材料,例如反射或吸收表面。孔隙层1140被配置成接收输入边际射线线路1133。孔隙层1140可包含在例如光学透明衬底等单个整体件上构建的光学透明孔隙和光学不透明光阑区的阵列。在一些实施例中,孔隙层1140可由形成光阑区1146的光学不透明材料形成,且孔隙1144可以是层1140中的孔或开口。

在一些实施例中,接收器通道1120包含光学透镜层1150,其包含表征为焦距的准直透镜1151。准直透镜可从孔隙1144和光阑区1146的平面偏移所述焦距,且与孔隙1144轴向对准(即,准直透镜的光轴与孔隙的中心对准)。以此方式,准直透镜可被配置成使穿过孔隙的光线准直,使得光线近似平行于准直透镜1151的光轴行进。光学透镜层1150可任选地包含孔隙、光学不透明区和管结构以减少串扰。

在一些实施例中,接收器通道1132包含光学滤波器层1160,其包含例如布拉格反射体(braggreflector)型滤波器等光学滤波器1161。在一些实施例中,光学滤波器层安置于光学透镜层1150的检测器侧上(与孔隙侧相对)。光学滤波器层被配置成以特定操作波长和通带通过垂直入射的光子。光学滤波器层1160可含有任何数目的光学滤波器1161。光学滤波器层1160可任选地包含孔隙、光学不透明区和管结构以减少串扰。

在一些实施例中,接收器通道1132包含安置在滤波器层后方的包含像素1171的光电传感器层1170。所述像素可以是具有由例如标准光电二极管、雪崩二极管、spad阵列、rcp(谐振腔光电二极管)或其它合适的光电检测器组成的检测器有源区域的能够检测光子的光电传感器。光电传感器1171可由若干光子检测器区域(例如,各自为不同的spad)组成,所述光子检测器区域一起协作以充当单个像素,常常相比于单个大光子检测区域具有较高动态范围、较快响应时间,或其它有益的性质。光电传感器层1170指代由像素组成的层,且可包含任选的结构来改进检测效率和减少对于相邻接收器结构的串扰。光电传感器层1170可任选地包含漫射体、会聚透镜、孔隙、光学不透明管间隔件结构、光学不透明圆锥形间隔件结构等。

杂散光可能由光学表面的粗糙度、透明介质中的缺陷、背反射等等导致,且可在接收器通道1132内或接收器通道1132外部的许多特征处产生。杂散光可沿着不平行于准直透镜1151的光轴的路径引导穿过滤波器区1161;在孔隙1144和准直透镜1151之间反射;且通常采取可能含有许多反射和折射的任何其它路径或轨迹。如果多个接收器通道排列成彼此邻近,则一个接收器通道中的此杂散光可由另一通道中的像素吸收,借此污染定时、相位或光子固有的其它信息。相应地,接收器通道1120还可表征有若干结构以减少串扰和增加接收器通道之间的信号。此类结构和其它合适的接收器通道的实例在2018年5月14日提交的标题为“具有每通道多个会聚透镜的成像模块的微光学件(micro-opticsforimagingmodulewithmultipleconverginglensesperchannel)”的美国专利申请15/979,295中描述,该美国专利申请的公开内容出于所有目的以全文引用的方式并入本文。

3.检测器阵列(例如,spad)

图12a和12b展示根据某些实施例的基于spad的光电传感器阵列层1200的俯视图。图12a中展示的光电传感器阵列层1200是传感器通道1210的二维阵列,其中每一单独传感器通道可对应于例如接收器通道1055。因此,每一传感器通道1210可包含如上文所描述的spad的群组。在图12a中展示的实例中,光电传感器阵列1200为包含总共72个单独传感器通道1210的18x4阵列。光电传感器阵列1200还包含阵列的顶部处的8个校准像素1220。校准像素1220可例如被不透明表面覆盖使得其不会暴露于任何光,且因此可用于测量暗计数。

图12b展示传感器通道1210的子组的放大图,其示出每一传感器通道1210可由一起协作以充当单个像素的各个spad1212的群组(阵列)形成。当spad用作光电检测器时,此布置是有利的,因为在光子检测事件之后,spad有一段空载时间,在此期间外部电路用于淬灭spad使得它准备好再次检测。因此,单个spad所能检测到的光强度(以光子/秒测量)有一个上限。也就是说,单个spad无法检测每淬灭时间大于一个光子的光强度。如图12b所示将多个spad集合在一起增加了可检测到的总体强度,因为并非全部spad都同时饱和。因此,在检测时,n个spad的集合的动态范围可以是单个spad的动态范围的n倍。

4.发射器阵列(例如,vcsel)

图13a和13b分别描绘根据某些实施例的发射器阵列1300的简化俯视图和侧视图。发射器阵列1300可包含制造在单个整体式芯片1305上且模式与相应传感器芯片上的光电传感器像素匹配的vcsel发射器1310的二维阵列。在此实例中,发射器阵列1300vcsel阵列为16x4,总共64个发射器通道1310以与上文图12a中展示的中间64个检测器通道匹配。发射器阵列1300还可包含多个导线1320,用以驱动阵列1300中的各种发射器的信号可经由所述多个导线传输到发射器。

如参考图12a描述,光学发射器的整体式vcsel阵列可布置在tx侧微光学件封装后方和tx侧体形光学件模块后方。每一vcsel发射器可输出大体上等同于(或稍大于)由孔隙层或微光学件层的微透镜的数值孔径限定的相应孔隙的直径的初始直径的照明射束,以确保由vcsel发射的所有或大体上所有光将传输到场中的对象。

5.体形光学件

在一些实施例中,本公开提供远心光测距装置,其具有快速透镜系统(例如,f数=1.0、1.2或1.4)和/或在当光测距装置用于汽车、卡车或其它车辆的自主导航中的障碍检测和避免时将很可能遇到的规定温度范围内被动无热的透镜系统。此外,体形光学系统拥有低焦平面失真,且光学元件中的一个或多个光学元件可被涂覆ar以使光学输贯量最大化且减少杂散反射、重像和不同传感器通道之间的串扰。有利的是,光学系统为图像空间远心的且因此提供传感器阵列的检测器通道中的每一个的“直行”视图(当从对象侧检视时)(每一主射线垂直于焦平面到达),甚至是所述阵列的外边缘上的那些检测器通道。

如本文中所使用,被动无热描述一种光学件系统,其中具有由透镜系统在阵列上聚焦的非零角大小的来自扩展源的光的光斑质量并不随着温度改变而显著改变。如果透镜系统的后焦距改变,且阵列相对于后透镜元件保持在相同位置,则阵列上的光的光斑质量将改变。如本文中所使用,光斑质量可由具有聚焦到图像平面上的0.13度的角大小且被25μm直径的圆包含的来自扩展源的光的一部分限定。如果光斑质量对于某一温度范围内的所有温度保持高于50%,则光学机械系统被视为在所述温度范围内被动无热。所列的直径和角大小为示范性的且取决于微光学件阵列中的孔隙的大小、系统的焦距等。

图14描绘根据一些实施例在广温度范围内提供热稳定图像平面的光学模块1400的一部分的简化示意图。光学模块1400包含阵列1410、体形透镜系统1420、透镜壳体1430,和使壳体以机械方式与阵列联接的安装件1440。光学模块1400可表示光感测模块330的实施例(在此情况下,阵列1410可为光电传感器阵列)或光发射模块340的实施例(在此情况下,阵列1410可为发射器阵列),且在一些实施例中安装件1440可表示图9中展示的安装件905的一部分。根据本公开的一些实施例的光测距装置可包含第一光学模块1400作为光感测模块,以及第二模块1400作为光发射模块。

阵列1410可以是平面的(例如,相对于完美平面具有10mm直径盘片上小于1mm的峰到谷的不规整性)以易于制造(例如,在半导体衬底上形成大量阵列,其中一个阵列中存在多个发射器或检测器)。在一些实施例中,阵列1410可包含微光学件结构,例如上文相对于图10所论述的传输器微光学件封装1020或接收器微光学件封装1050,这取决于光学模块1400被实施为光感测模块还是光发射模块。

如图14所示,透镜系统1420可包含第一透镜1422、第二透镜1424、第三透镜1426和第四透镜1428。在一些实施例中,第一透镜、第二透镜、第三透镜和第四透镜安装于透镜壳体1430中。当被实施为成像器传感器的一部分(即,阵列1410为光电传感器阵列)时,透镜壳体1430、透镜系统1420和安装件1440被配置成在某一温度范围(例如,-40摄氏度到85摄氏度、-50摄氏度到95摄氏度、-35摄氏度到60摄氏度、-40摄氏度到105摄氏度、-45摄氏度到110摄氏度,或-35摄氏度到100摄氏度)内被动地将来自透镜系统的光聚焦到光电传感器阵列。在包含阵列中的微光学件结构的实施例中,透镜系统1420被配置成被动地将来自透镜系统的光聚焦到微光学件结构的孔隙层,且微光学件结构中的各种微光学组件可接着将每一个别微光学件通道处接收的光聚焦到所述通道的相应光电传感器。

所述阵列可针对不同温度保持在透镜系统的图像平面处。可挑选材料以降低成本、减小重量和/或维持阵列处的图像平面。为了降低成本,第一透镜1422、第二透镜1424、第四透镜1428可由塑料(例如,okp-1)制成,而第三透镜1426可由玻璃制成(例如,以减少透镜系统中的温度变化)。第四透镜的顶点和图像平面之间的标称距离为8mm。在所展示的透镜组合件中,图像平面随着温度增加朝向第四透镜移动。这在以下条件下可能是反直觉的:塑料的折射率随着温度增加减小,这通常会推动图像平面远离塑料透镜,因为具有较低折射率的透镜将不如类似形状的具有较高折射率的凸状塑料透镜那么明显地(即,较长焦距)折射光(例如,根据造镜者等式(lensmaker'sequation),其中焦距与透镜和空气的折射率之间的差成反比,其中空气的折射率等于1;还参看斯涅尔定律(snell'slaw))。玻璃透镜与两个或两个以上塑料透镜的组合可以允许透镜系统的有效焦距随着温度增加而减小,但透镜系统中的一个或多个塑料透镜具有随着温度增加的焦距。

透镜壳体1430(例如,由聚碳酸酯制成)可随着温度增加而伸长。在一些实施例中,安装件1440附接到透镜壳体1430在第三透镜1426附近,使得第四透镜1428随着壳体的温度增加而向右移动。使透镜壳体1430与阵列1410分离的安装件1440的材料随着温度增加而膨胀,从而使透镜壳体1430从阵列1410移动离开(例如,向左)。同时,透镜壳体1430随着温度增加而膨胀,使第四透镜1428朝向(例如,向右)阵列1410移动。并且,同时,背焦移使图像平面向左移动,如上文所描述。通过恰当地挑选壳体材料cte、安装件材料cte和壳体到安装件接合部位置,背焦移可由前述壳体膨胀和安装件膨胀来补偿,使得图像平面在所述温度范围内保持与阵列近似重合。

在一些实施例中,安装件1440可与透镜壳体1430联接在玻璃透镜(即,在一些实施例中,第三透镜1426)附近。在一些实施例中,安装件1440可与透镜壳体1430联接在玻璃透镜附近,使得随着透镜系统1420的焦距相对于阵列1410移动(例如,远离阵列),透镜系统1410的最接近阵列1410的透镜(例如,第四透镜1428)可相对于阵列1410移动(例如,朝向阵列)。在一些实施例中,附近可以是透镜壳体1430的外侧上的点或线,最接近玻璃透镜;和/或或距所述点或线+/-5mm或+/-10mm的范围内。

针对-5摄氏度到70摄氏度的温度范围使用zemax光学设计程序以实验方式检验图14中的透镜系统的光斑质量。在一些实施例中,可在环境变得低于特定温度时故意加热lidar单元的内部。举例来说,当环境为-40摄氏度时,lidar单元的内部组件可被加热以使透镜系统保持在-5摄氏度或更高的温度。在一些实施例中,光测距装置可包含温度传感器和加热元件(例如,电阻加热器),所述加热元件可在温度下降到低于如温度传感器检测到的预定水平时加热透镜系统。相应地,可预期系统1400至少对于-40摄氏度到70摄氏度范围内的温度(100度的温度范围)较好地工作。在各种实施例中,系统1400可在以下范围内的温度上提供稳定的图像平面:0摄氏度到32摄氏度;0摄氏度到55摄氏度;-10摄氏度到32摄氏度;-10摄氏度到55摄氏度;-20摄氏度到60摄氏度;-40摄氏度到85摄氏度;以及其组合。在一些实施例中,温度范围可从-40摄氏度到105摄氏度(145度的温度范围)。

由具有与透镜相当的热膨胀系数(cte)的材料制造透镜壳体1430以避免对透镜加压常常可能是合乎需要的。改变壳体材料还可改变透镜元件如何随着温度增加而扩散开。在一些实施例中,大体上不改变/调谐透镜壳体1430的材料cte以防止光学性能降低。因此,透镜壳体材料具有接近透镜的cte的cte;且并不考虑壳体的所有可能材料,因为一些壳体材料的cte与透镜的cte足够不同而致使透镜中将发生应力,这可能导致透镜的光学性能降级。

透镜壳体1430的cte可在某一温度范围内与透镜系统1420匹配,使得透镜系统1420的焦平面在所述温度范围内相对于透镜壳体1430是稳定的。在一些实施例中,安装件1440的热系数与透镜系统1420和/或与透镜壳体1430的热膨胀匹配,使得焦平面在所述温度范围内相对于检测器(例如,检测器阵列)的位置是稳定的。如本文中所使用,如果焦平面在某一温度范围内在系统的检测器处维持预定分辨率,则称焦平面在所述给定温度范围内是“稳定”的。作为一实例,在一些实施例中,预定分辨率需要聚焦到检测器处的某一点的光具有25微米圆中的光的50%,在其它实施例中预定分辨率需要聚焦到检测器处的某一点的光具有20微米圆中的光的80%。安装件1440的材料的cte可在这样的告诫下进行挑选:安装件1440的材料坚固和/或具有机械刚性(较低cte材料往往会较坚固)。在此实例中,背焦移为负(向左)而非为正(向右)的事实允许非常刚性的玻璃填充聚合物,乃至比如镁或铝等金属用于安装件1440的隔离材料。

图15a、15b和15c描绘根据本公开的一些实施例的光学模块1500。光学模块1500包含具有四个透镜(其中仅两个透镜1522和1528在图15a-15c中可见)的透镜系统1520和壳体1530。透镜系统1520可为例如透镜系统1420,而壳体1530可为例如透镜壳体1430。因为图像传感器通常不是圆形,所以组合件系统1500的透镜通常不需要为圆形。举例来说,与透镜组合件1500相关联的光电传感器阵列可为窄且高的,如此透镜可以矩形的方式夹持。制造矩形模制聚合物光学件通常更容易且更便宜,而将玻璃透镜磨削为矩形形状可能较昂贵。第三透镜(图15a-15c中未图示)的直径可限定透镜系统的最小宽度,借此限定矩形形状的一部分。通过使用圆形玻璃元件和矩形模制聚合物光学件,透镜组合件1500可相对容易且便宜地制造。

在一些实施例中,两个壳体放置成尽可能靠近在一起(例如,触碰),这是保持玻璃透镜(例如,透镜3)较小的另一原因。举例来说,光测距装置可包含安装于第一壳体中的第一透镜系统、安装于第二壳体中的第二透镜系统、传感器阵列和发射器阵列。第一透镜系统、第一壳体和传感器阵列可形成第一单元。第二透镜系统、第二壳体和发射器阵列可形成第二单元。第一单元和第二单元可尽可能靠近地并排放置(例如,在一些实施例中隔开不超过2.5cm,且在其它实施例中不超过5.0cm),使得从第二单元发射且被反射/散射的光由第一单元在与第二透镜系统投射来自发射器阵列的光类似的视场中聚集。

透镜系统1520可被设计成快速透镜系统。在一些实施例中,透镜系统1520的f数在1.0和2.4之间(例如,1.2)。传感器阵列上的光斑大小可具有20μm圆中的光的80%。此外,透镜系统1520可具有等于或小于100mm、50mm、35mm和/或20mm和/或等于或大于5、10、15、20和/或25mm的轨迹长度。

在各种实例中,根据本公开的体形透镜系统可包含:两个或两个以上塑料透镜和至少一个玻璃透镜;两个或两个以上塑料透镜;和/或一个或多个玻璃透镜。在一些实施例中,微光学件结构可被包含作为如上文所描述的阵列的一部分。微光学件可针对阵列上的不同发射器和/或检测器以不同方式修改光,而体形透镜系统针对整个阵列修改光。在一些实施例中,针对每一个别阵列元件存在一个或多个微光学件元件。

图16a描绘光学模块1600的实施例的俯视图,所述光学模块1600可以是例如光学模块1500。图16a中识别横截面a-a。图16b描绘横截面a-a的实施例。如图16b所示,光学模块1600包含四个光学元件,包含:元件1622(例如,透镜1)、元件1624(例如,透镜2)、元件1626(例如,透镜3)和元件1628(例如,透镜4);以及壳体1630。图16c展示横截面a-a的放大部分。放大部分展示透镜1624和透镜1626可如何安装于壳体1630中的一个实例。透镜系统1600的孔隙光阑1625在透镜1624和透镜1626之间。孔隙光阑1625可用于将透镜1624固定在壳体内。

图16d描绘透镜组合件1600的实施例的侧视图。图16d中识别横截面b-b。图16e描绘横截面b-b的实施例。展示透镜1、透镜2、透镜3、透镜4和壳体。

图17a描绘第一透镜(透镜1522)的实施例的横截面。第一透镜具有第一表面s1和第二表面s2。透镜1522的第一表面s1和透镜1的第二表面s2为球面。第一透镜的第一表面s1可以是凸表面。第一透镜的第二表面s2可以是凹表面。从左向右行进的光可由第一透镜聚焦。第一透镜的第一表面可大于第一透镜的第二表面以聚集透镜系统的光(例如,减小透镜系统的f数)。

图17b描绘第二透镜(透镜1524)的实施例的横截面。第二透镜具有第一表面s1和第二表面s2。透镜1524的第一表面s1和透镜2的第二表面s2为非球面。第二透镜的第一表面s1可以是凸表面。第二透镜的第二表面s2可为平面、稍微凸面或稍微凹面。从左向右行进的光可由第二透镜散焦。

图17c描绘第三透镜(透镜1526)的实施例的横截面。第三透镜具有第一表面s1和第二表面s2。透镜1526的第一表面s1和透镜3的第二表面s2为球面。举例来说,第三透镜可具有等于或大于10mm且等于或小于20mm(例如,11、11.5、12、12.5、13、13.5、14和/或14.5mm)的宽度(例如,直径)。在一些实施例中,第三透镜为高折射率玻璃。在一些实施例中,玻璃的折射率在100度的温度范围内不改变(例如,改变等于或小于0.05%)。第三透镜的第一表面s1可为平面、稍微凸面或稍微凹面。第三透镜的第二表面s2可为凸面。从左向右行进的光可为准直的或由第三透镜稍微聚焦。

图17d描绘第四透镜(透镜1528)的实施例的横截面。第四透镜具有第一表面s1和第二表面s2。透镜4的第一表面s1和透镜4的第二表面s2为非球面。第四透镜的第一表面s1可为凸面。第三透镜的第二表面s2可为凸面。从左向右行进的光可聚焦到所述阵列。

通过混合塑料和玻璃透镜,以及混合非球面和球面透镜,可为自主车辆制造一种经济的轻型紧凑和/或无热的光测距装置。

在一些实施例中,透镜系统具有固定焦距(例如,当处于恒定温度时的固定焦距;非变焦透镜)。在一些实施例中,透镜系统具有固定焦距以减小透镜系统的大小、重量、零件数目和/或复杂性。

图18描绘具有三个透镜:第一透镜1822;第二透镜1824;以及第三透镜1826的光学模块1800的实施例。第一透镜、第二透镜和第三透镜安装于壳体1830中。连接器1805使壳体与传感器1810(例如,阵列中的传感器)联接。第一透镜、第二透镜和第三透镜可由塑料(例如,okp-1)制成。第一透镜、第二透镜和第三透镜是透镜系统1810的一部分。透镜系统1810据估计在50摄氏度温度范围(例如,0到50摄氏度)内具有约105μm的焦移。壳体1830可由高cte材料制成,和/或安装件1840附接在透镜1822附近,以保持阵列处的透镜系统1810的焦平面。在图18中的实施例中,使用聚碳酸酯(cte=70ppm/c),且安装件1840附接到壳体1830,距阵列25-35mm。附接到壳体距阵列181030mm的安装件1840、归因于壳体1830的热膨胀的透镜系统1810的透镜的移动、归因于安装件1840的热膨胀的壳体1830的移动和/或归因于温度改变的透镜系统1810的焦移的组合匹配以使透镜系统的焦平面与阵列对准。

为了说明和描述的目的,已经呈现了本发明的示例性实施例的以上描述。其不希望是详尽的,或将本发明局限为所描述的精确形式,根据上文的教示许多修改和变化是可能的。实施例是为了解释本发明的原理和其实际应用而选择和描述,由此使得所属领域的其他技术人员能够在各种实施例中并且以适于所预期的特定用途的各种修改利用本发明。

作为一实例,虽然上文描述的各种实施例和实例已经主要聚焦于在用于汽车或其它道路车辆使用案例的3d感测的上下文内应用光测距,但本文中所公开的系统可以在任何应用中使用,而不脱离本公开的范围。根据本公开的lidar系统的较小乃至微小形状因数实现例如用于固态光测距系统的若干额外使用案例。作为特定实例,系统可用于装置内的3d相机和/或深度传感器,例如移动电话、平板pc、膝上型计算机、桌面pc或其它外围设备和/或用户接口装置内。作为其它实例,可以在移动装置内采用一个或多个实施例以支持面部辨识和面部跟踪能力、眼部跟踪能力和/或用于对象的3d扫描。其它使用案例包含面向前的深度相机以用于移动装置中的扩增和虚拟现实应用。

其它应用包含在例如飞机、直升飞机、无人机等机载车辆上部署一个或多个系统。此类实例可以提供3d感测和深度成像以帮助导航(自主或以其它方式)和/或产生3d地图以用于稍后分析,例如支持地球物理、建筑和/或考古学分析。系统还可安装到例如建筑物、墙、线杆、桥、脚手架等固定对象和结构。在此些情况下,系统可用于监视室外区域,例如制造设施、组装线路、工业设施、施工场所、发掘场所、公路、铁路、桥梁等。此外,系统可安装在室内且用于监视人和或物体在建筑物内的移动,例如库存在仓库内的移动,或者人、行李或商品在办公楼、机场、火车站等内的移动。

作为另一实例,虽然上文的各种实例包含ir或近ir波长内的激光器作为根据本公开的一些实施例的lidar系统中的发射器,但本公开的实施例不限于用于所述发射器的任何特定波长的光或其它类型的辐射。举例来说,在一些实施例中,发射器可以是产生具有任何合适的已知操作波长的脉冲的激光器,所述操作波长包含可尤其非常适合于水下应用的绿(532nm)波长,或可尤其适于大气lidar系统的uv波长。如得到本公开的益处的所属领域的普通技术人员将理解,光测距系统的许多不同应用是可能的,且因此,本文提供的实例仅出于说明性目的而提供,且不应解释为将此类系统的用途仅限于明确公开的实例。

上文描述的特定实施例的特定细节可以任何合适的方式组合,而不脱离本发明的实施例的精神和范围。然而,本发明的其它实施例可以针对与每个个别方面或这些个别方面的特定组合相关的特定实施例。举例来说,为了减小阵列上的光斑大小,可使用四个以上透镜,使用更多非球面表面,和/或可使用多种类型的塑料。作为另一实例,在一些实施例中,可使用弯曲检测器和/或发射器。此外,在一些实施例中,使用三个透镜而非四个(例如,两个透镜为塑料,且一个透镜为玻璃)。这些实例和其它实例包含于本公开的范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1