一种声波时差的计算方法与流程

文档序号:25086124发布日期:2021-05-18 18:59阅读:233来源:国知局
一种声波时差的计算方法与流程

1.本申请实施例涉及测井资料处理领域,尤指一种声波时差的计算方法。


背景技术:

2.声波时差指声波信号在地层中传播单位距离用的时间,是测井解释中的重要参数,具有十分重要的用途,可用于计算孔隙度、识别地层岩层、计算岩石力学特性参数、指示超压层、估算地层强度、预测地层采油出砂压力、估算地层渗透率、评价地层各向异性、分析井眼稳定性等,是阵列声波测井资料处理解释的基础和关键点。
3.相关技术中,声波时差的计算是采用由kimball于1984年提出慢度

时间相关法(slowness time coherence,stc),该方法通过对不同接收器的波形做相关,得到时间慢度相关图,再搜索相关系数极大值得到目标波信号的时差。
4.在实际应用中,该方法采用人工定性认识、人工分层、人工确定分层参数、stc方法定量计算的流程,存在着工作量大、技术难度高、时效性较差等问题。


技术实现要素:

5.为了解决上述任一技术问题,本申请实施例提供了一种声波时差的计算方法。
6.为了达到本申请实施例目的,本申请实施例提供了一种声波时差的计算方法,包括:
7.确定预先获取的目标深度点的原始信号中不同类型的波信号的时域边界;
8.按照所述目标深度点的时域边界,从所述目标深度点的原始信号中提取所述目标深度点的目标波信号;
9.计算所述目标波信号的频域信息和时域信息;
10.利用所述频域信息和时域信息,计算所述目标波信号在所述目标深度点的声波时差。
11.一种存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行上文所述的方法。
12.一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行上文所述的方法。
13.上述技术方案中的一个技术方案具有如下优点或有益效果:
14.通过确定预先获取的目标深度点的原始信号中不同类型的波信号的时域边界,按照所述目标深度点的时域边界,从所述目标深度点的原始信号中提取所述目标深度点的目标波信号,计算所述目标波信号的频域信息和时域信息,再利用所述频域信息和时域信息,计算所述目标波信号在所述目标深度点的声波时差,与相关技术中的计算方式相比,降低了因人为原因导致的时差计算不准确的概率,减少了工作量并提升了时效性。
15.本申请实施例的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请实施例而了解。本申请实施例的目的和其他优点
可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
16.附图用来提供对本申请实施例技术方案的进一步理解,并且构成说明书的一部分,与本申请实施例的实施例一起用于解释本申请实施例的技术方案,并不构成对本申请实施例技术方案的限制。
17.图1为本申请实施例提供的声波时差的计算方法的流程图;
18.图2为本申请实施例提供的阵列声波测井仪单个接收器的信号图像的示意图;
19.图3为对图2所示信号图像进行声波分割的结果示意图;
20.图4为本申请实施例提供的全卷积神经网络的结构图;
21.图5为本申请实施例根据时域边界分割不同波信号的示意图;
22.图6为对图5中p波执行频谱计算后得到的时间

频率谱的示意图;
23.图7为对图6中的时间

频谱图执行提取操作的示意图。
具体实施方式
24.为使本申请实施例的目的、技术方案和优点更加清楚明白,下文中将结合附图对本申请实施例的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请实施例中的实施例及实施例中的特征可以相互任意组合。
25.在实现本申请过程中,对相关技术进行了技术分析,发现相关技术至少存在如下问题,包括:
26.1)基于工程师的理论基础与工作经验完成计算,技术门槛较高;
27.2)需根据地层特性进行精细分层并确定各层的解释参数,工作量大;
28.3)解释参数不易直观获取,尤其是频域参数;
29.4)在井况复杂时,计算操作的时效性较差。
30.基于上述分析,本申请实施例提供一种声波时差的计算方法,利用阵列声波测井数据准确计算多种波信号的时差。
31.图1为本申请实施例提供的声波时差的计算方法的流程图。如图1所示,所示方法包括:
32.步骤101、确定预先获取的目标深度点的原始信号中不同类型的波信号的时域边界;
33.在一个示例性实施例中,不同类型的波信号可以为单极声源下可为纵波、横波或斯通利波;或者,可以为偶极声源下可以是泄漏纵波或者横波。
34.在一个示例性实施例中,时域边界为时间信息,该时间信息是对一种类型的波的接收的终止时间与对另一种类型的波的接收的开始时间的分界点,即该到达该时域边界之前的时间内该原始信号中的波信号为一种类型的波信号,在该时域边界之后的时间内该原始信号中的波信号为另一种类型的波信号。
35.步骤102、按照所述目标深度点的时域边界,从所述目标深度点的原始信号中提取所述目标深度点的目标波信号;
36.步骤103、计算所述目标波信号的频域信息和时域信息;
37.步骤104、利用所述频域信息和时域信息,计算所述目标波信号在所述目标深度点的声波时差。
38.本申请实施例提供的方法,通过确定预先获取的目标深度点的原始信号中不同类型的波信号的时域边界,按照所述目标深度点的时域边界,从所述目标深度点的原始信号中提取所述目标深度点的目标波信号,计算所述目标波信号的频域信息和时域信息,再利用所述频域信息和时域信息,计算所述目标波信号在所述目标深度点的声波时差,与相关技术中的计算方式相比,工作量小且计算时效性好的优势。
39.下面对本申请实施例提供的方法进行说明:
40.在一个示例性实施例中,所述确定预先获取的目标深度点的原始信号中不同类型的波信号的时域边界,包括:
41.将阵列声波测井仪单个接收器接收到的二维矩阵数据作为样本数据,对所述样本数据中不同类型的波信号进行分割,确定所述样本数据中不同类型的波信号的分割线;
42.利用所述分割线在所述样本数据中的位置,获取各深度点上不同类型的波信号的时域边界;
43.从所述各深度点上不同类型的波信号的时域边界中确定所述目标深度点的时域边界。
44.图2为本申请实施例提供的阵列声波信号的信号图像的示意图。如图2所示,以偶极声源在软地层中测井数据为例说明,图中不同类型的波为可见明显的泄漏纵波(p)和横波(s)。
45.图2中以偶极声源在软地层中测井数据为例说明,实际情况按照声源类型和地层类型不同可有以下组合:
46.1、偶极声源+软地层,可见明显的泄漏纵波(p)和横波(s),具体参见图3;
47.2、偶极声源+硬地层,可见微弱或不可见泄漏纵波(p)和明显横波(s);
48.3、单极声源+软地层,可见明显纵波(p)、微弱或不可见横波(s)及斯通利波;
49.4、单极声源+硬地层,可见明显纵波(p)、横波(s)及斯通利波。
50.可以将单个接收器的波形信号进行重采样及裁剪,转换成若干个512*256的数据样本,构建预测样本库。利用全卷积神经网络,对样本库进行预测,得到各样本中不同波信号的时域边界,再将各样本的时域边界转换为时间并进行拼接,得到完整的波信号边界曲线。
51.在一个示例性实施例中,所述样本数据中不同类型的波信号的分割线是通过如下方式得到的,包括:
52.确定所述样本数据中每个元素属于目标类型的波信号的概率;
53.根据确定的概率,将所述样本数据中概率大于预设概率阈值的元素确定为目标元素;
54.根据所述目标元素的位置,确定所述样本数据中目标类型的波信号的位置,并将所述目标类型的波信号的边界作为所述样本数据中目标类型的波信号的分割线。
55.图3为对图2所示信号图像进行声波分割的结果示意图。如图3所示,首先将声波测井数据重采样并拆解成若干个256*512的片段,形成预测样本库;然后将每个样本输入全卷积神经网络进行预测,从输出矩阵中提取波信号边缘,得到每个样本的目标波信号到达时
间,最后将各样本的目标波信号到达时间拼接起来得到图3中的p波和s波的分割线,具体参见图3中黑框区域中灰色线条为分割线,即,时域边界。从图3可以看出,分割线左侧为p波,分割线右侧为s波,且每个深度点均对应有各自的时域边界。
56.在一个示例性实施例中,所述样本数据中不同类型的波信号的分割线是通过如下方式得到的,包括:
57.将所述样本数据切割成至少两个片段;
58.对每个片段中的二维矩阵数据进行波类型的识别,确定每个片段中波信号的边界;
59.将不同片段中波信号的边界分别转换为时间数据;
60.将各个片段的时间数据拼接起来,得到所述样本数据中不同类型的波信号的分割线。
61.如果样本数据过大,即满足数据量大的判断条件,则对样本数据进行切割;如果样本数据较小,即不满足数量大的判断条件,则直接对该样本数据进行整体处理,执行波类型的识别,确定样本数据中波信号的边界,无需切换成片段以及对片段进行拼接的操作。
62.图4为本申请实施例提供的全卷积神经网络的结构图。如图4所示,模型输入为512*256大小的矩阵,矩阵包含有256个采样点的波信号,中间经过五次下采样(左侧半支)、五次上采样(右侧半支),中间采用跳跃连接的方式确保空间信息不丢失,输出矩阵大小与输入矩阵一致,同为512*256输出矩阵中每个数值表示输入矩阵中每个点属于目标波信号的概率,通过二值化(阈值取0.5),可得到分割后的波信号。
63.上述全卷积神经网络的处理过程如下:
64.(1)将声波测井数据重采样并拆解成若干个256*512的片段,形成预测样本库;
65.(2)将每个样本输入全卷积神经网络进行预测,得到输出矩阵,输出矩阵中值为1为目标波信号所在位置;
66.(3)从输出矩阵中提取波信号边缘,此时边缘表示的方式为所在矩阵中列号,根据测量的起始时间、终止时间及总列数,可将信号边缘从列号转换为时间,进而得到每个样本的目标波信号到达时间;
67.(4)最后将各样本的目标波信号到达时间拼接起来得到图3中的p波和s波的分割线。
68.在一个示例性实施例中,所述按照所述目标深度点的时域边界,从所述目标深度点的原始信号中提取所述目标深度点的目标波信号,包括:
69.如果所述目标波信号为所述原始信号中先接收的信号,表示所述目标深度点的时域边界的左侧为目标波信号,则提取所述原始信号在起始时间至时域边界内的信号作为目标波信号;
70.如果所述目标波信号为所述原始信号中后接收的信号,表示所述目标深度点的时域边界的右侧为目标波,则提取所述原始信号在所述时域边界至结束时间内的信号作为目标波信号。
71.以图3为例进行说明,从图3可以看出,分割线左侧为p波的到达时间,分割线右侧为s波的到达时间,且每个深度点均对应有各自的时域边界。可以从图3中确定目标深度点的时域边界。
72.图5为本申请实施例根据时域边界分割不同波信号的示意图。如图5所示,原始信号的坐标图中横坐标为时间,单位是微秒,纵坐标表示信号强度,为信号的振幅。图5所示的原始信号的时域边界为5000微秒,因此,提取后的结果是以该时域边界为分割点,将原始信号拆分成两部分。
73.图5中在偶极声源和软地层情况下单个深度点下提取操作的为例进行说明,在图5中以偶极声源中的泄漏纵波(p波)为例,对于偶极声源的横波、单级声源中的纵波、横波或者斯通利波将采用一样的操作方式。
74.在一个示例性实施例中,所述计算所述目标波信号的频域信息和时域信息,包括:
75.确定所述目标波信号基于时间的频谱图,其中所述频谱图所在的坐标系横坐标为时间,纵坐标为频率;
76.获取所述频谱图左右边界位置的横坐标以及所述频谱图上下边界位置的纵坐标;
77.将所述左右边界位置的横坐标确定为目标波信号的起始时间time_start和结束时间time_stop,将上下边界位置的纵坐标确定为目标波信号的最小频率freq_min和最大频率freq_max。
78.图6为对图5中p波执行频谱计算后得到的时间

频率谱的示意图。如图6所示,利用小波变换对目标波信号进行时频分析,得到时间

频率谱。
79.图7为对图6中的时间

频谱图执行提取操作的示意图。如图7所示,从时间频率谱中分割出波信号区域,参见图7所示的白色区域。通过识别该波信号区域的上下左右的边界点的位置,可以计算出目标波信号的起始时间time_start、结束时间time_stop、最小频率freq_min及最大频率freq_max。
80.需要说明的是,与相关技术提取频域信息的方式不同,本申请实施例提供的方法可以借助时间

频谱图自动完成频域信息的提取,提高提取效率。
81.基于上述方式可以快速准确地得到所需的数值信息。
82.在一个示例性实施例中,所述利用所述频域信息和时域信息,计算所述目标波信号在所述目标深度点的声波时差,包括:
83.确定所述目标波信号的中心频率freq_middle;
84.如果所述目标波信号为所述原始信号中先接收的信号,表示所述目标深度点的时域边界的左侧为目标波,则利用所述中心频率freq_middle对所述目标波信号的起始时间time_start进行修正,得到修正后的起始时间time_start,利用修正后的起始时间time_start、结束时间time_stop、最小频率freq_min和最大频率freq_max,计算所述目标波信号在所述目标深度点的声波时差;
85.如果所述目标波信号为所述原始信号中后接收的信号,表示所述目标深度点的时域边界的右侧为目标波,则利用所述中心频率freq_middle对所述目标波信号的结束时间time_stop进行修正,得到修正后的起始时间time_start,利用修正后的起始时间time_start、结束时间time_stop、最小频率freq_min和最大频率freq_max,计算所述目标波信号在所述目标深度点的声波时差。
86.对于边界左侧的波信号,其结束时间较为准确,需要修正其起始时间;对于边界右边的波信号,其起始时间较为准确,需要修正其结束时间。
87.在一个示例性实施例中,如果所述目标深度点的时域边界的左侧为目标波,所述
修正后的起始时间time_start是通过如下方式得到的,包括:
88.根据目标波信号的类型,确定len_coef,根据目标波信号类型不同,len_coef取值范围在2

8之间;
89.time_start=time_stop

106/freq_middle*len_coef;
90.如果所述目标深度点的时域边界的右侧为目标波,所述修正后的结束时间time_stop是通过如下方式得到的,包括:
91.time_stop=time_start+106/freq_middle*len_coef。
92.窗长计算:window_length=106/freq_middle*a;
93.其中a的取值在1至2之间,具体数值按照经验确定,优选的设置为1.5。
94.将得到的如下参数作为参数带入stc方法,实现时差的计算,包括:
95.如果所述目标波信号为所述原始信号中先接收的信号,表示所述目标深度点的时域边界的左侧为目标波,则利用修正后起始时间time_start、修正后的结束时间time_stop,最小频率freq_min,最大频率freq_max,以及窗长计算window_length进行计算;
96.如果所述目标波信号为所述原始信号中后接收的信号,表示所述目标深度点的时域边界的右侧为目标波,则利用起始时间time_start、修正后的结束时间time_stop,最小频率freq_min,最大频率freq_max,以及窗长计算window_length进行计算。
97.本申请实施例提供的方法,结合深度学习技术与信号时频分析方法,实现了stc方法中全部解释参数的智能计算,最后利用stc方法实现时差计算,数据解析的工作量低、时效性好且操作难度低。本申请实施例提供的方法基于波信号分割技术实现不同测量模式、不同地层类型得到的波信号的精确分割,并基于波信号分割操作的结果,执行目标波信号提取、目标波信号时频分析、目标波信号时域、频域信息提取的操作,用以自动完成声波时差的解析参数的,最终使用时间

慢度相关法实现时差计算。
98.本申请实施例提供一种存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行上文任一项中所述的方法。
99.本申请实施例提供一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行上文任一项中所述的方法。
100.本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些组件或所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于ram、rom、eeprom、闪存或其他存储器技术、cd

rom、数字多功能盘(dvd)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模
块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1