一种基于激光光斑中心定位方式实现高楼偏摆监测的方法与流程

文档序号:24740143发布日期:2021-04-20 21:15阅读:194来源:国知局
一种基于激光光斑中心定位方式实现高楼偏摆监测的方法与流程

1.本申请涉及测量技术领域,尤其涉及一种基于激光光斑中心定位方式实现高楼偏摆监测的方法。


背景技术:

2.随着经济实力的增强,高层建筑日益增多。高层建筑在载荷、强风、温度变化,等外界因素的影响下将发生振动变形及缓慢的伪静态变形,变形量的大小直接影响其安全健康,所以,对高层建筑进行动态变形监测,不但可及时评估高楼的健康状况,避免灾难性事故发生,而且对建筑安全运营能力评估、结构设计参数检验、建筑寿命评估等都具有极其重要的意义。
3.目前对高层建筑进行振动变形监测的常规传感器主要有加速度仪、倾斜仪、自动跟踪全站仪、gps定位等。尽管上述方法都能达到一定的目的,但加速仪容易产生零飘,难以实现似静态位移监测,利用倾斜仪测量需要布置多个倾斜仪,才能通过角度计算得出位移,智能型全站仪的成本较高,而gps的数据误差来源广泛,因此数据难以处理。


技术实现要素:

4.本发明的目的在于提供一种基于激光光斑中心定位方式实现高楼偏摆监测的方法,通过激光直接将楼体的摆动转化为光屏上光斑的位移,可以很直观的确认当前楼体的偏移幅度,为运行维护人员提供实时性的参考,以解决上述背景技术中提出现有技术中的问题。
5.一种基于激光光斑中心定位方式实现高楼偏摆监测的方法,包括以下步骤:
6.s1、对图像采集系统中的相机进行标定;
7.s2、将棋盘格标靶卸下,将光屏,即半透明的亚克力板,安装在待测楼高处;
8.s3、相机在亚克力板远离激光侧实时捕获带有光斑位置信息的图片,并将图片传送到电脑端;
9.s4、电脑端对获取到带有光斑的图片进行分析。
10.优选的,所述s1中,标定过程包括以下步骤:
11.(1)将相机固定,面对相机侧固定一个棋盘标靶,调整相机对焦直至相机能清楚拍摄下标靶图案;
12.(2)读取棋盘格角点的像素坐标(x
p
,y
p
);
13.(3)以棋盘格上任意一角点作为坐标原点,获取角点在棋盘格平面上的二维物理坐标(x
r
,y
r
);
14.(4)使用最小二乘法进行多项式拟合获取像素坐标(x
p
,y
p
)到物理坐标(x
r
,y
r
)的映射关系。
15.优选的,所述s2中,作为光屏的亚克力板需满足以下要求:当激光照射到亚克力板上表面时,光斑能透过亚克力板并被背面的相机捕捉到。
16.优选的,所述s3中,图片分析包括以下步骤:
17.(1)根据所选用的激光中心波段选取合适的通道分量进行分析,即提取光斑与周围环境相比最为清晰的分量;
18.(2)使用canny算子获取该通道图片轮廓信息;
19.(3)对于最先获取的图片,即第一张图片,需通过轮廓拟合的算法,截取包含光斑的轮廓的图片,随后将方形图分割成尺寸相同的四个子图片作为模板;
20.(4)各个子图片分别作为模板同样板图进行匹配,样板图为除第一张图外,相机捕获的其余图片,匹配计算后会返回模板在样板图上的位置信息,即模板图左上角点在样板图上的像素坐标
21.(5)通过对分割图像的大小和像素坐标进行计算,从而实现对光斑的定位,获取光斑中心的像素坐标
22.(6)将光斑的像素坐标和带入s1获取的像素坐标(x
p
,y
p
)到物理坐标(x
r
,y
r
)的映射关系中,获得光斑在光屏上的物理坐标;
23.(7)以任一时刻的物理坐标作为参考点,计算得知光斑的位移;
24.(8)由于激光是沿直线传播,且在室内时湍流对激光的传播影响很小,基本可忽略不计,故光斑的位移即代表着楼体的偏摆程度。
25.优选的,截取包含光斑的轮廓的图片,具体操作是:利用椭圆拟合算法拟合光斑轮廓,由此确定光斑的轮廓和中心点,确定其中心的像素坐标接着以光斑中心点为中心,以长轴长b的2.2倍为边长,截取方形图,由此可知方形图边长为a=2.2*b。
26.优选的,样板图光斑中心像素坐标计算公式为:
[0027][0028][0029]
式中b为截取图边长;和为四个子图像左上角点像素坐标的横坐标和纵坐标;和为样板图中光斑中心像素坐标的横坐标和纵坐标。
[0030]
优选的,楼体偏移量为:
[0031][0032][0033]
式中和是样板图中光斑中心物理坐标的横坐标和纵坐标;和为模板图中光斑中心物理坐标的横坐标和纵坐标;δx和δy是楼体偏移量。
[0034]
优选的,所述相机为cmos相机。
[0035]
一种基于激光光斑中心定位方式实现高楼偏摆监测的方法,还包括位移监测装置,所述位移监测装置包括相机,激光器和光屏构成图像采集单元、光纤接收器及电脑端。
[0036]
优选的,所述光纤接收器与光纤发送器实现网线至光纤至网线的转换,完成图像从采集端到计算端的传送。
[0037]
本发明的有益效果是:相对于现有的高楼偏摆监测技术,本发明将激光、cmos相机、轮廓拟合和模板匹配算法相结合,开发出了高楼楼体偏摆的在线检测方案,利用激光沿直线传播的特性,实现了对高楼偏摆的高精度监测,相比于传统测量方案,本发明大大提高了测量结果的准确性,拓展了高楼楼体偏移检测的选择范围,该方法具有适用性好,应用场景广泛等特点,因此,本发明技术对于高楼楼体偏摆在线监测具有重要的应用价值。
附图说明
[0038]
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
[0039]
图1为本发明的原理示意图;
[0040]
图2为本发明的系统结构图;
[0041]
图3为本发明的计算流程图。
[0042]
附图标记:1、相机;2、光屏;3、激光器;4、光纤接收器;5、电脑端;6、网线;7、光纤。
具体实施方式
[0043]
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请具体实施例及相应的附图对本申请技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
[0044]
以下结合附图,详细说明本申请各实施例提供的技术方案。
[0045]
实施例1
[0046]
请参阅图1

3,一种基于激光光斑中心定位方式实现高楼偏摆监测的方法,包括以下步骤:
[0047]
s1、对图像采集系统中的相机1进行标定,标定过程包括以下步骤:
[0048]
(1)将相机1固定,面对相机1侧固定一个棋盘标靶,调整相机1对焦直至相机1能清楚拍摄下标靶图案;
[0049]
(2)读取棋盘格角点的像素坐标;
[0050]
(3)以棋盘格上任意一角点作为坐标原点,获取角点在棋盘格平面上的二维物理坐标;
[0051]
(4)使用最小二乘法进行多项式拟合获取像素坐标到物理坐标的映射关系;
[0052]
s2、将棋盘格标靶卸下,将光屏2,即半透明的亚克力板,安装在待测楼高处,作为光屏2的亚克力板需满足以下要求:当激光照射到亚克力板上表面时,光斑能透过亚克力板并被背面的相机1捕捉到;
[0053]
s3、相机1在亚克力板远离激光侧实时捕获带有光斑位置信息的图片,并将图片传送到电脑端5;
[0054]
图片分析包括以下步骤:
[0055]
(1)根据所选用的激光中心波段选取合适的通道分量进行分析,即提取光斑与周
围环境相比最为清晰的分量;
[0056]
(2)使用canny算子获取该通道图片轮廓信息;
[0057]
(3)对于最先获取的图片,即第一张图片,需通过轮廓拟合的算法,截取包含光斑的轮廓的图片,随后将方形图分割成尺寸相同的四个子图片作为模板;
[0058]
(4)各个子图片分别作为模板同样板图进行匹配,样板图为除第一张图外,相机1捕获的其余图片,匹配计算后会返回模板在样板图上的位置信息,即模板图左上角点在样板图上的像素坐标。
[0059]
(5)通过对分割图像的大小和像素坐标进行计算,从而实现对光斑的定位,获取光斑中心的像素坐标;
[0060]
(6)将光斑的像素坐标和带入s1获取的像素坐标到物理坐标的映射关系中,获得光斑在光屏2上的物理坐标;
[0061]
(7)以任一时刻的物理坐标作为参考点,计算得知光斑的位移;
[0062]
(8)由于激光是沿直线传播,且在室内时湍流对激光的传播影响很小,基本可忽略不计,故光斑的位移即代表着楼体的偏摆程度;
[0063]
s4、电脑端5对获取到带有光斑的图片进行分析。
[0064]
截取包含光斑的轮廓的图片,具体操作是:利用椭圆拟合算法拟合光斑轮廓,由此确定光斑的轮廓和中心点,确定其中心的像素坐标。接着以光斑中心点为中心,以长轴长b的2.2倍为边长,截取方形图,由此可知方形图边长为a=2.2*b。
[0065]
样板图光斑中心像素坐标计算公式为:
[0066][0067][0068]
式中b为截取图边长;和为四个子图像左上角点像素坐标的横坐标和纵坐标;和为样板图中光斑中心像素坐标的横坐标和纵坐标。
[0069]
楼体偏移量为:
[0070][0071][0072]
式中和是样板图中光斑中心物理坐标的横坐标和纵坐标;和为模板图中光斑中心物理坐标的横坐标和纵坐标;和是楼体偏移量。
[0073]
一种基于激光光斑中心定位方式实现高楼偏摆监测的方法,还包括位移监测装置,位移监测装置包括相机1,激光器3和光屏2构成图像采集单元、光纤7接收器4及电脑端5,光纤7接收器4与光纤7发送器实现网线6至光纤7至网线6的转换,完成图像从采集端到计算端的传送,相机1为cmos相机1。
[0074]
实施例2
[0075]
如图1所示,本发明位移监测装置,由相机1,激光器3和光屏2构成图像采集单元,通过光纤7接收器4与光纤7发送器实现网线6—光纤7—网线6的转换,完成图像从采集端到计算端的传送。尽管楼体在偏摆时,可能会形成一定挠度,但是相机1所捕获的光斑中心位
置并不会随楼体挠度的变化为变化。同时,由于挠度的变较小,也不会相机1捕获的光斑成像造成影响,因此对于本测量方法,挠度的变动基本可忽略不记录。
[0076]
如图2所示,本发明的结构为:由激光器3发出的激光,由光屏2承接后形成光斑再被相机1所捕获,捕获的图像经由光纤7系统传输至计算系统。最后计算系统通过相应算法对光斑中心进行定位,从而计算出光斑中心偏移量,即楼体待测点处的偏摆量。
[0077]
如图3所示,本位移监测方法,包括如下步骤:
[0078]
步骤1,对图像采集系统中的相机1进行标定。标定过程包括:
[0079]
将相机1固定,面对相机1侧固定一个棋盘标靶。调整相机1对焦直至相机1能清楚拍摄下标靶图案;
[0080]
读取棋盘格角点的像素坐标。
[0081]
以棋盘格上任意一角点作为坐标原点,获取角点在棋盘格平面上的二维物理坐标;
[0082]
使用最小二乘法进行多项式拟合获取像素坐标到物理坐标的映射关系;
[0083]
将棋盘格标靶卸下,将光屏2,即半透明的亚克力板,安装在待测楼高处。作为光屏2的亚克力板需满足以下要求:当激光照射到亚克力板上表面时,光斑能透过亚克力板并被背面的相机1捕捉到。相机1在亚克力板远离激光侧实时捕获带有光斑位置信息的图片,并将图片传送到电脑端5。
[0084]
步骤3,电脑端5对获取到带有光斑的图片进行分析。分析有包括以下步骤:
[0085]
根据所选用的激光中心波段选取合适的通道分量进行分析(即提取光斑与周围环境相比最为清晰的分量);
[0086]
使用canny算子获取该通道图片轮廓信息。
[0087]
对于最先获取的图片,即第一张图片,需通过轮廓拟合的算法,截取包含光斑的轮廓的图片。具体操作是:利用椭圆拟合算法拟合光斑轮廓,由此确定光斑的轮廓和中心点,确定其中心的像素坐标。接着以光斑中心点为中心,以长轴长b的2.2倍为边长,截取方形图,由此可知方形图边长为a=2.2*b。随后将方形图分割成尺寸相同的四个子图片作为模板。
[0088]
各个子图片分别作为模板同样板图进行匹配,样板图为除第一张图外,相机1捕获的其余图片。匹配计算后会返回模板在样板图上的位置信息,即模板图左上角点在样板图上的像素坐标。
[0089]
通过对分割图像的大小和像素坐标进行计算,从而实现对光斑的定位,获取光斑中心的像素坐标。
[0090]
将光斑的像素坐标和带入步骤1获取的像素坐标到物理坐标的映射关系中,获得光斑在光屏2上的物理坐标。
[0091]
以任一时刻的物理坐标作为参考点,计算得知光斑的位移。
[0092]
由于激光是沿直线传播,且在室内时湍流对激光的传播影响很小,基本可忽略不计,故光斑的位移即代表着楼体的偏摆程度。
[0093]
上述步骤中,关于样板图光斑中心像素坐标计算公式为:
[0094]
[0095][0096]
式中b为截取图边长;和为四个子图像左上角点像素坐标的横坐标和纵坐标;和为样板图中光斑中心像素坐标的横坐标和纵坐标。
[0097]
则楼体偏移量为:
[0098][0099][0100]
式中和是样板图中光斑中心物理坐标的横坐标和纵坐标;和为模板图中光斑中心物理坐标的横坐标和纵坐标;δx和δy是楼体偏移量。
[0101]
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1