本发明涉及一种室内移动机器人定位方法属于机器人领域,属于无线传感器网络的定位技术领域。
背景技术:
超宽带(uwb)定位技术其本质上属于无线传感器网络的定位技术,在室内定位中,uwb定位技术因其定位精度较高,设备价格低廉,抗干扰能力强等特点而得到广泛应用,目前uwb定位技术主要采用tdoa测距算法,rssi测距算法等各种算法进行定位距离估算,但tdoa,rssi测距算法误差较大,且在机器人运动过程中,uwb无法评估机器人自身姿态,本发明利用uwb系统,imu惯性测量单元,通过imu数据初步校验uwb数据,判断数据是否受到nlos影响,使用柯西鲁棒核函数,列文伯格-马夸尔特算法优化机器人当前时刻的位姿。大大提高了使用uwb在非视距情况下,进行机器人定位时机器人定位位姿不准的问题。得到在视距情况下比单一uwb定位更加精确的定位效果
技术实现要素:
为了解决上述问题,本发明提出了一种基于图优化的uwb/imu的室内移动机器人定位方法。
为了实现上述技术目的,本发明的技术方案为:
一种基于图优化的uwb/imu的室内移动机器人协同定位方法,实现该方法的系统包括机器人运动控制系统、机器人通讯系统、uwb系统和imu惯性测量单元;所述uwb系统包括2个及以上标签与imu,4个及以上基站,所述标签将接收基站所发送的信号,通过tof的方法测得标签与基站之间的距离。所述标签与imu皆搭设于机器人。本发明利用uwb系统,imu惯性测量单元,通过imu数据初步校验uwb数据,判断数据是否受到nlos影响,使用柯西鲁棒核函数,列文伯格-马夸尔特算法优化机器人当前时刻的位姿。大大提高了使用uwb在非视距情况下,进行机器人定位时机器人定位位姿不准的问题。得到在视距情况下比单一uwb定位更加精确的定位效果。
包括以下步骤:
(1)建立机器人uwb/imu的测量模型;
(2)初步校验uwb数据,判断数据是否受到nlos影响。
(3)构建机器人位姿优化图,推导误差函数,将机器人位置优化问题转化为位姿图优化问题。
(4)使用柯西鲁棒核函数,列文伯格-马夸尔特算法,优化机器人当前时刻的位姿;
在步骤(1)中,所述uwb测量模型如下:
其中l1,l2,l3....ln为各基站到机器人的距离,(x1,y1,z`1),(x2,y2,z2),(x3,y3,z3).....(xn,yn,zn)表示为基站坐标,(xu,yu,zu)为机器人位置;
在步骤(1)中,所述imu测量模型如下:
步骤(2)中,初步校验uwb数据,判断数据是否受到nlos影响。在k到k+1时刻有:
其中xk,xk-1为机器人在k,k-1时刻的位姿,因此可令
对rk进行检验,若
丢弃该测量值,记录uwb中有效测量的数量。
若此时有效数量m<2,则该时刻的uwb帧无法作为定位使用,利用imu对该时刻进行保持。
若m=2,由于室内环境中,地面相对平坦,可将z轴坐标看做一个常数,可令zk=zk-1。
步骤(3)中,依照步骤2中的测量模型,构建误差函数
其中ei,eu,eui分别为imu测量残差,uwb测量残差,以及imu到uwb坐标转换残差
步骤(4)中使用了柯西鲁棒核函数,列文伯格-马夸尔特算法,进行非线性优化。
柯西鲁棒核函数为:
其中,s为误差函数,c为控制参数,设置为1.5,使用该函数更新
其中,j为
使用列文伯格-马夸尔特算法修正方程式为:
其中h=jtj,b=jtf,通过启发式地调整λ来改善算法在局部极值附近的特性。
对
采用上述技术方案带来的有益效果:
本发明采用了使用了imu对uwb数据进行检验,采用柯西鲁棒核函数进行优化,显著的改善了uwb受到nlos影响导致定位数据不准确的情况
本发明使用了列文伯格-马夸尔特算法优化机器人位姿,进一步提升了系统定位精度。
本发明不仅能够显著的提高uwb/imu融合定位的定位精度,而且适用于其他的多机系统,具有广泛的应用前景。
附图说明
图1是本发明算法流程框图;
图2是本发明的uwb/imu,机器人布局图;
图3是机器人在场景中运动的位姿图;
具体实施方式
以下将结合附图,对本发明的技术方案进行详细说明。
本发明设计了一种基于图优化的uwb/imu的室内移动机器人协同定位方法,如图1所示,基本步骤如下:
(1)建立传感器观测模型
(2)初步校验uwb数据,判断数据是否受到nlos影响。
(3)构建机器人位姿优化图,构建误差函数,将机器人位置优化问题转化为位姿图优化问题。
(4)使用柯西鲁棒核函数,列文伯格-马夸尔特算法,优化机器人当前时刻的位姿。
在本实施例中,采用如下优选方案实现步骤1:
在(1)步骤中,所述uwb测量模型如下:
其中l1,l2,l3....ln为各基站到机器人的距离,(x1,y1,z`1),(x2,y2,z2),(x3,y3,z3).....(xn,yn,zn)表示为基站坐标,(xu,yu,zu)为机器人位置
按照权利要求1所述的一种基于图优化的uwb/imu的室内移动机器人定位方法其特征在于,在(1)步骤中,所述imu测量模型如下:
在本实施例中,采用如下优选方案实现步骤2:
初步校验uwb数据,判断数据是否受到nlos影响。在k到k+1时刻有:
其中xk,xk-1为机器人在k,k-1时刻的位姿,因此可令
对rk进行检验,若
丢弃该测量值,记录uwb中有效测量的数量。
若此时有效数量m<2,则该时刻的uwb帧无法作为定位使用,利用imu对该时刻进行保持。
若m=2,由于室内环境中,地面相对平坦,可将z轴坐标看做一个常数,可令zk=zk-1。
在本实施例中,采用如下优选方案实现步骤(3),依照步骤2中的测量模型,构建误差函数
其中ei,eu,eui分别为imu测量残差,uwb测量残差,以及imu到uwb坐标转换残差在本实施例中,采用如下优选方案实现步骤(4):使用了柯西鲁棒核函数,列文伯格-马夸尔特算法,进行非线性优化。
柯西鲁棒核函数为:
其中,s为误差函数,c为控制参数,设置为1.5,使用该函数更新
其中,j为
使用列文伯格-马夸尔特算法修正方程式为:
其中h=jtj,b=jtf,通过启发式地调整λ来改善算法在局部极值附近的特性。
对