1.本发明涉及锂离子电池的剩余寿命预测技术领域,特别涉及一种考虑不确定性的锂离子电池剩余寿命集成预测方法。
背景技术:2.剩余寿命(remaining useful life,rul)预测是故障预测与健康管理(prognostics and health management,phm)的核心问题。以锂离子电池为研究对象,作为电动汽车、便携式电子设备和航空航天系统中用于能源供应和存储的核心部件,锂离子电池劣化、失效等寿命问题使得精准的锂离子电池剩余寿命预测至关重要。
3.然而,在锂离子电池的剩余寿命预测中,存在着数据和模型不确定性两类问题。首先,数据不确定性反映于由设备、产品内外环境和测量误差引起的数据噪声。数据噪声不可避免,还会阻碍数据分析的准确性,因而应在剩余寿命预测模型建模中将数据噪声加以考虑以降低其带来的数据不确定影响。其次,模型不确定性反映于从一系列候选模型中选择适应于当前预测对象的最佳模型涉及的不确定性。为降低模型不确定性,可以采用模型集成方法,该方法通过加权平均多个模型能够扩展模型假设空间,从而使真模型包含于新的模型空间内,降低模型不确定性。然而,模型集成方法的集成机制需能够准确反映模型的预测性能水平等因素,为了使集成模型能够提高模型预测性能,应对集成模型的集成机制展开进一步研究。
技术实现要素:4.本发明针对上述现有技术中的缺陷,提出一种考虑不确定性的锂离子电池剩余寿命集成预测方法。本发明的目的在于不仅考虑到数据不确定性,提出基于模型预测误差分解的数据噪声量化方法并应用于基于粒子滤波的剩余寿命预测中;而且同时考虑模型不确定性,提出基于模型集成的锂离子电池剩余寿命预测方法。
5.本发明的技术方案为提供一种考虑不确定性的锂离子电池剩余寿命集成预测方法,其包括:
6.数据获取步骤,对锂离子电池进行测试,测试锂离子电池在室温下依次经过充电和放电时的充放电电流a,从而获得锂离子电池充放电电容退化数据c={c(k),k},其中k为充放电循环数,基于预测误差的偏差
‑
方差
‑
噪声分解,提取观测数据中的数据噪声并进行量化,获得噪声的噪声方差
7.个体模型构建步骤,基于锂离子电池的群体历史数据,应用最小二乘法从数据层和模型层两个层面生成多样性个体模型h={h1,h2,...,h
i
},对个体模型进行模型初始化;基于锂离子电池的个体在线数据,即待预测锂离子电池在使用阶段内不断实时获得的数据,应用粒子滤波算法,建立状态空间模型,对个体模型进行实时更新,完成个体模型构建;
8.模型权重获取步骤,基于锂离子电池的群体历史数据,使用遗传算法,获得模型初始权重ω={ω1,ω2,...,ω
i
},基于集成模型预测误差最小对个体模型权重进行初始优
化,其优化函数为:
[0009][0010]
其中,{ω
j
,j=1,2,...,i}为个体模型初始权重,e
ij
为模型在历史数据子集中获得的个体模型的预测误差,优化函数中为集成模型平均预测偏差,为集成模型平均预测方差;并且基于锂离子电池的个体在线数据,考虑个体模型在个体在线数据中的拟合优度,对模型权重进行更新修正;
[0011]
集成模型构建和预测步骤,基于获得的模型权重,加权集成个体模型,构建锂离子电池剩余寿命预测集成模型;并且利用所述集成模型对电池容量的退化状态进行预测,根据电池容量的失效阈值获得锂离子电池剩余寿命的预测结果。
[0012]
更进一步地,所述锂离子电池剩余寿命预测的产品为宇航、军工或者民用等领域内的电子产品。
[0013]
更进一步地,所述数据获取步骤包括:
[0014]
测试锂离子电池在室温下依次经过充电和放电时的充放电电流a后,通过对电池电流a进行放电时间内的积分计算获得电池容量观测数据c,观测数据中包含数据噪声ε,对数据噪声进行提取和量化,数据噪声的存在形式的表达式为:
[0015][0016]
其中,c(k)为第k个充放电循环下的电池容量观测值,y(k)为第k个充放电循环下的真实电池容量输出,ε为服从零均值高斯分布的数据噪声,为噪声方差;
[0017]
基于预测误差的偏差
‑
方差
‑
噪声分解和预测模型无偏假设数据噪声为:
[0018][0019]
其中,h为预测模型,为预测模型h的期望,e[(h
‑
c)2]为模型预测误差平方期望,为模型期望方差,数据噪声的方差计算如下:
[0020]
[0021]
其中,h
i
,i=1,2,...n为不同数据集训练下的预测模型输出,c
i
,i=1,2,...n为不同数据集训练下的电池电容观测值,和分别为对模型预测误差平方期望和模型方差期望的估计,从群体历史数据中独立于模型训练集和验证集的数据集中获得。
[0022]
更进一步地,个体模型构建步骤具体包括:
[0023]
考虑个体模型的多样性,在模型层,选取双指数经验模型和多项式经验模型作为待选个体模型;在数据层,将锂离子电池的群体历史数据分为多个相互独立的数据集s={s1,s2,...,s
i
},选取数据集s中第一子集作为模型验证集v,第二子集作为模型训练集t;应用最小二乘法对不同模型训练集下的双指数模型和多项式模型进行训练,获得2i个候选个体模型;对由每一个训练集分别生成的两个候选个体模型进行模型验证,选取预测性能好的模型作为个体模型,生成i个初始个体模型h={h1,h2,...,h
i
}。
[0024]
基于生成的初始个体模型,建立基于双指数和多项式的状态空间模型,应用粒子滤波算法对个体模型进行状态空间模型构建和模型状态参数更新,获得在第k个充放电循环下的个体模型
[0025]
更进一步地,模型权重获取步骤还包括:
[0026]
基于优化的初始个体模型权重,建立模型权重的状态空间模型,应用粒子滤波算法对个体模型的分配权重进行更新修正,所述状态空间模型建立如下:
[0027][0028]
其中,ω
k
={ω1,ω2,...,ω
i
}
k
是电池在第k个充放电循环下的个体模型权重,h
k
={h1,h2,...,h
i
}
k
是电池在第k个充放电循环下的个体模型输出,c
k
是电池在第k个充放电循环下的电池电容观测值,μ
k
为模型权重在第k个充放电循环下的状态噪声,ε
k
为在第k个充放电循环下的观测数据噪声,σ为状态方程的状态噪声协方差。在粒子滤波算法下,个体模型权重的后验分布如下:
[0029][0030]
模型权重在电池第k个充放电循环下的后验期望如下:
[0031][0032]
其中,δ(
·
)为狄拉克函数,n为粒子数,为第i个粒子的粒子权重。
[0033]
更进一步地,集成模型构建和预测步骤包括:在个体模型构建完成后,基于获取的时变模型权重对个体模型进行加权集成,从而构建集成模型,实现锂离子电池的剩余寿命预测,如下:
[0034]
[0035]
rul
k
={x
‑
k|h
ens
(x)=th
capacity
}
ꢀꢀꢀ
(9)
[0036]
其中,h
ensk
(x)为在第k个充放电循环下获得的集成模型,x为用于电池容量预测的电池充放电循环数输入,rul
k
为在第k个充放电循环下的电池剩余寿命预测值,th
capacity
为电池容量失效阈值。
[0037]
本发明的有益技术效果为:本发明提供了一种考虑不确定性的锂离子电池剩余寿命集成预测方法。本发明考虑数据不确定性,提出基于模型预测误差分解的数据噪声量化方法并应用于基于粒子滤波的剩余寿命预测中;考虑模型不确定性,提出基于模型集成的锂离子电池剩余寿命预测方法。根据群体历史数据,基于模型预测误差的分解量化数据噪声,并在不同数据集下,基于最小二乘法使用双指数经验模型和多项式经验模型训练出多个候选个体模型,根据模型的预测精度从每个数据集下的候选经验模型中选择最优的模型作为初始个体模型,基于预测误差最小加权法对个体模型进行模型权重初始化;根据个体在线数据,通过粒子滤波引入数据噪声,应用粒子滤波算法对个体模型进行基于拟合优度的在线更新,并二次应用粒子滤波对个体模型权重进行基于拟合优度的更新修正,以使模型权重基于在线数据时变和具有退化相关性;基于修正后的模型权重对个体模型进行集成加权平均,进而建立集成退化模型对锂离子电池的剩余寿命进行预测。本发明提出了基于时变和退化加权的模型集成法,基于该方法可以建立基于最优模型加权的集成模型以考虑因模型选择带来的模型不确定性影响,并降低由数据噪声带来的数据不确定性,从而提高了锂离子电池的剩余寿命预测的准确性和鲁棒性。
附图说明
[0038]
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本技术的其它特征、目的和优点将会变得更明显。
[0039]
图1为本发明的考虑不确定性的锂离子电池剩余寿命集成预测方法的结构示意图;
[0040]
图2为本发明的一个实例中考虑不确定性的锂离子电池剩余寿命集成预测方法的流程示意图;
[0041]
图3a和图3b分别为本发明实施例中两种锂离子电池cs2和cx2在全寿命周期下原始容量退化数据的示意图;
[0042]
图4a和图4b分别为本发明实施例中两种锂离子电池cs2和cx2在全寿命周期下预处理后的容量退化数据的示意图;
[0043]
图5a、图5b和图5c分别为本发明实施例中个体模型和集成模型在锂离子电池处于120次充电循环的退化早期、240次充电循环的退化中期、以及360次充电循环的退化晚期时的预测退化曲线;
[0044]
图6a、图6b和图6c分别为本发明个体模型和集成模型在锂离子电池cx2#3号处于200次充电循环退化早期、400次充电循环退化中期、以及600次充电循环退化晚期时的预测退化曲线。
具体实施方式
[0045]
下面结合附图和实施例对本技术作进一步的详细说明。可以理解的是,此处所描
述的具体实施例仅仅用于解释相关发明,而非对该发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与有关发明相关的部分。
[0046]
需要说明的是,在不冲突的情况下,本技术中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本技术。
[0047]
如图1所示为本发明的考虑不确定性的锂离子电池剩余寿命集成预测方法的结构示意图;其包括以下步骤:数据获取步骤,对锂离子电池进行测试,测试锂离子电池在室温下依次经过充电和放电时的充放电电流a,从而获得锂离子电池充放电电容退化数据c={c(k),k},其中k为充放电循环数,基于预测误差的偏差
‑
方差
‑
噪声分解,提取观测数据中的数据噪声并进行量化,获得噪声的噪声方差
[0048]
个体模型构建步骤,基于锂离子电池的群体历史数据,应用最小二乘法从数据层和模型层两个层面生成多样性个体模型h={h1,h2,...,h
i
},对个体模型进行模型初始化;基于锂离子电池的个体在线数据,即待预测锂离子电池在使用阶段内不断实时获得的数据,应用粒子滤波算法,建立状态空间模型,对个体模型进行实时更新,完成个体模型构建;
[0049]
模型权重获取步骤,基于锂离子电池的群体历史数据,使用遗传算法,获得模型初始权重ω={ω1,ω2,...,ω
i
},基于集成模型预测误差最小对个体模型权重进行初始优化,其优化函数为:
[0050][0051]
其中,{ω
j
,j=1,2,...,i}为个体模型初始权重,e
ij
为模型在历史数据子集中获得的个体模型的预测误差,优化函数中为集成模型平均预测偏差,为集成模型平均预测方差;并且基于锂离子电池的个体在线数据,考虑个体模型在个体在线数据中的拟合优度,对模型权重进行更新修正;
[0052]
集成模型构建和预测步骤,基于获得的模型权重,加权集成个体模型,构建锂离子电池剩余寿命预测集成模型;并且利用所述集成模型对电池容量的退化状态进行预测,根据电池容量的失效阈值获得锂离子电池剩余寿命的预测结果。
[0053]
图2出示出在本发明的一个具体实施例中考虑不确定性的锂离子电池剩余寿命集成预测方法流程示意图,该方法具体包括以下步骤:
[0054]
数据获取步骤s101,使用arbin电池测试仪和cadex电池测试仪对锂离子电池进行测试,测试电池在室温下依次经过充电和放电时的充放电电流a,从而获得电池充放电电容退化数据c={c(k),k},其中k为充放电循环数,基于预测误差的偏差
‑
方差
‑
噪声分解,提取观测数据中的数据噪声并进行量化,获得噪声的噪声方差
[0055]
本发明的方法可以根据锂离子电池在以往试验中测得的群体历史容量退化数据,对试验中存在的噪声进行量化,输出是该类产品在试验中存在的噪声方差,可被用于退化数据分析和剩余寿命预测等。
[0056]
个体模型初始化步骤s102,将锂离子电池的群体历史数据分为多个相互独立的数据集s={s1,s2,...,s
i
},选取数据集s中一子集作为模型验证集v,则其余全部作为模型训练集t;使用最小二乘法在不同训练集下训练得到2i个候选个体模型;利用验证集,对候选个体模型进行模型验证,选取在同一个训练集下最优的候选个体模型作为初始个体模型h={h1,h2,...,h
i
}。该步骤是分别基于已经获得的cs2和cx2锂离子电池数据集进行计算的。优选地,i=3。
[0057]
模型权重初始化步骤s103,使用锂离子电池的群体历史数据中的验证集获得个体模型在剩余寿命的预测输出并计算剩余寿命的预测误差,从模型精准度和稳定性考虑模型预测精度,基于集成模型预测误差最小,使用遗传算法优化个体模型权重,获得初始模型权重ω={ω1,ω2,...,ω
i
}。
[0058]
通过这种方式,所有既得用于模型训练和验证的群体历史数据可以用于生成初始个体模型和初始模型权重。
[0059]
个体模型更新步骤s104,根据锂离子电池的个体在线数据,应用粒子滤波算法,建立状态空间模型,对个体模型进行更新,生成用于模型集成的个体模型。优选地,cv=0.01,n=1000。
[0060]
模型权重更新步骤s105,根据锂离子电池的个体在线数据,考虑个体模型在个体在线数据中的拟合优度,对模型权重进行更新修正。
[0061]
集成模型构建与预测步骤s106,基于建立的个体模型和更新修正的模型权重,建立用于锂离子电池剩余寿命预测的集成模型,使用该集成模型对电池容量的退化状态进行预测,根据电池容量的失效阈值得到剩余寿命的预测结果。
[0062]
本发明的方法可以对以下产品的锂离子电池进行剩余寿命预测:宇航产品、军工产品或者民用电子产品。
[0063]
在本发明中,所述数据获取步骤s101包括:
[0064]
采用锂离子电池容量作为剩余寿命预测训练数据,该数据的存在形式如下:
[0065][0066]
对于电池容量观测数据的获得,通过使用arbin电池测试仪和cadex电池测试仪测试电池,在室温下依次经过充电和放电两个工况阶段,其中,充电阶段采用标准的恒流/恒压方案使电池充电至电压到达4.2v,然后保持电压不变继续充电,直到充电电流降到50ma;放电阶段保持放电电流不变,直至电池电压降至2.7v,获得电池在全寿命周期下的充放电电流a数据。电池容量c通过对电池电流a进行放电时间内的积分计算获得,如下:
[0067]
c=∫adt
ꢀꢀꢀ
(3)
[0068]
cs2和cx2锂离子电池数据集为已经获得的数据集,根据以上公式获得电容容量的原始观测数据,见图3a和图3b,其中图3a和图3b分别为本发明一个实施例中电池额定容量为cs2和cx2的锂离子电池在全寿命周期下原始容量退化数据。为了在不丢失电池退化特征信息的条件下保证退化数据的可用性和适当化简,对数据进行预处理。由于异常值的存在会导致滤波结果的发散,冗余数据过多会阻碍算法的运算效率,数据预处理主要包括异常
值剔除和数据精简步骤,电池容量预处理后的观测数据,见图4a和图4b,其中图4a和图4b分别为cs2和cx2锂离子电池在全寿命周期下预处理后的容量退化数据。
[0069]
对于数据噪声的获取,基于预测误差的偏差
‑
方差
‑
噪声分解对数据噪声进行量化。根据数据噪声的正态分布假设,有e(ε)=0,数据噪声的方差量化如下:
[0070][0071]
和分别为对模型预测误差期望和模型预测方差的估计,从群体历史数据中独立于模型训练集和验证集的数据集中获得。基于cs2和cx2锂离子电池数据集,数据噪声量化为:
[0072]
表1.数据噪声方差量化结果
[0073][0074]
在本发明中,个体模型初始化步骤s102的操作为:
[0075]
(1)在模型层,选取双指数经验模型和多项式经验模型作为待选个体模型,其中:
[0076]
双指数模型:c(k)=α1·
exp(α2·
k)+α3·
exp(α4·
k)
[0077]
多项式模型:c(k)=β1·
k2+β2·
k+β3[0078]
其中,α1,α2,α3,α4以及β1,β2,β3分别为双指数模型和多项式模型的待估模型参数。
[0079]
(2)对于锂离子电池的群体历史数据集,其群体历史数据集是由多个独立的电池全寿命周期数据集作为子数据集组成。利用模型训练集应用最小二乘法对双指数模型和多项式模型进行训练,获得2i个候选个体模型。
[0080]
(3)利用模型验证集,对由每一个训练集分别生成的两个候选个体模型进行模型验证,选取预测性能较好的模型作为个体模型,生成i个初始个体模型。
[0081]
在本发明的一个实施例中,模型权重初始化步骤s103的操作为:
[0082]
(1)对于i个个体模型,计算其在验证数据集上的剩余寿命预测输出:
[0083][0084]
其中,i=1,2,...,i,j=1,2,...,i,为第i个体模型在第j个验证集的电池容量输出达到失效阈值时的电池充电循环数,即失效寿命,k
ij
为开展剩余寿命预测时的电池充电循环数。
[0085]
(2)计算个体模型的剩余寿命预测误差,假设为剩余寿命真值,则模型的预测误差e
ij
如下:
[0086]
[0087]
(3)应用遗传算法对模型初始权重进行基于集成模型预测误差最小的优化求解,如下:
[0088][0089]
其中,{ω
j
,j=1,2,...,i}为个体模型初始权重,e
ij
为模型在历史数据子集中获得的个体模型的预测误差,优化函数中为集成模型平均预测偏差,为集成模型平均预测方差;并且基于锂离子电池的个体在线数据,考虑个体模型在个体在线数据中的拟合优度,对模型权重进行更新修正根据数据集特征,i=3。
[0090]
在本发明的一个实施例中,个体模型更新步骤s104使用粒子滤波算法进行个体模型构建,并在个体模型构建中加入数据噪声参数以考虑数据不确定性,其操作包括:
[0091]
基于生成的初始个体模型,建立基于双指数和多项式的状态空间模型,应用粒子滤波算法对个体模型进行状态空间模型构建和模型状态参数更新,如下:
[0092]
表2.应用粒子滤波更新个体模型参数
[0093][0094]
其中,α1,α2,α3,α4及β1,β2,β3分别为双指数模型和多项式模型的待估模型参数,c
k
是电池在第k个充放电循环下的电池容量,为观测数据噪声方差,σ
α
和σ
β
分别为双指数和多项式状态方程的状态噪声协方差,和分别为两状态空间模型的状态参数方差,cv为方差系数,δ(
·
)为狄拉克函数,n为粒子数,为第i个粒子的粒子权重。
[0095]
在本发明的一个实施例中,个体模型更新步骤s105使用粒子滤波算法进行个体模型构建,并在个体模型构建中加入数据噪声参数以考虑数据不确定性,其操作包括:
[0096]
基于优化的初始个体模型权重,建立模型权重的状态空间模型,应用粒子滤波算法对个体模型的分配权重进行更新修正。其中状态空间模型建立如下:
[0097][0098]
其中,ω
k
={ω1,ω2,...,ω
i
}
k
是电池在第k个充放电循环下的个体模型权重,h
k
={h1,h2,...,h
i
}
k
是电池在第k个充放电循环下的个体模型输出,σ为状态方程的状态噪声协方差。在粒子滤波算法下,个体模型权重的后验分布如下:
[0099][0100]
模型权重在电池第k个充放电循环下的后验期望如下:
[0101][0102]
进一步,集成模型构建与预测步骤s106的操作如下:
[0103]
在个体模型参数及权重被更新修正后,基于时变和退化相关权重的集成模型被构建,从而实现锂离子电池的剩余寿命预测,如下:
[0104][0105]
rul
k
={x
‑
k|h
ens
(x)=th
capacity
}
ꢀꢀꢀ
(12)
[0106]
通过将个体模型进行加权集成,模型集成法降低了任意选择一个不合适的模型的风险。当获得新的数据时,通过本发明的方法,将此次模型集成法的模型先验概率设为上一次模型集成法所得到的模型后验概率,个体模型和模型权重均实现了迭代更新,给出的预测结果将基于新的数据做出调整。
[0107]
在本发明的一个实施例中,对两个锂离子电池数据集进行了集成模型构建和剩余寿命预测,通过4次交叉验证,计算得到预测模型的平均绝对误差(mae)和均方根误差(rmse)均值进行模型预测性能进行评估,得到预测结果。
[0108]
表3.个体模型和集成模型的锂离子电池rul预测mae交叉验证结果
[0109][0110]
表4.个体模型和集成模型的锂离子电池rul预测rmse交叉验证结果
[0111][0112]
个体模型和集成模型在cs2锂离子电池和cx2锂离子电池剩余寿命预测中的mae和rmse结果如表3和表4所示。从表中可以看出,在个体模型的预测性能比较中,没有绝对的个体模型能够对不同类型的电池均具有最优的预测性能,例如个体模型1对于cs2的数据是最好的,而对于cx2的数据是最差的,这说明了剩余寿命预测中存在模型不确定性。此外,图5a、图5b、图5c和图6a、图6b及图6c分别给出了cs2锂离子电池#3号试样和cx2锂离子电池#3分别在退化早期、中期和晚期的预测曲线。具体为,图5a为个体模型和集成模型在锂离子电池cs2#3号处于退化早期、即在120次充电循环时的预测退化曲线,图5b为个体模型和集成模型在锂离子电池cs2#3号处于退化中期、即在240次充电循环时的预测退化曲线,图5c为个体模型和集成模型在锂离子电池cs2#3号处于退化晚期、即在360次充电循环时的预测退化曲线;图6a为个体模型和集成模型在锂离子电池cx2#3号处于退化早期即200次充电时的循环预测退化曲线,图6b为个体模型和集成模型在锂离子电池cx2#3号处于退化中期即400次充电时的循环预测退化曲线,图6c为个体模型和集成模型在锂离子电池cx2#3号处于退化晚期即600次充电时的循环预测退化曲线。在任意退化时期,集成模型的预测曲线均比单个模型的预测曲线更接近真实的退化曲线。
[0113]
本发明提出了的考虑不确定性的锂离子电池剩余寿命集成预测方法,不仅考虑数据不确定性,提出基于模型预测误差分解的数据噪声量化方法并应用于基于粒子滤波的剩余寿命预测中;而且考虑模型不确定性,提出基于模型集成的锂离子电池剩余寿命预测方法。根据群体历史数据,基于模型预测误差的分解量化数据噪声,并在不同数据集下,基于最小二乘法使用双指数经验模型和多项式经验模型训练出多个候选个体模型,根据模型的预测精度从每个数据集下的候选经验模型中选择最优的模型作为初始个体模型,基于预测误差最小加权法对个体模型进行模型权重初始化;根据个体在线数据,通过粒子滤波引入数据噪声,应用粒子滤波算法对个体模型进行基于拟合优度的在线更新,并二次应用粒子滤波对个体模型权重进行基于拟合优度的更新修正,以使模型权重基于在线数据时变和具有退化相关性;基于修正后的模型权重对个体模型进行集成加权平均,进而建立集成退化
模型对锂离子电池的剩余寿命进行预测。本发明提出了基于时变和退化加权的模型集成法,基于该方法可以建立基于最优模型加权的集成模型以考虑因模型选择带来的模型不确定性影响,并降低由数据噪声带来的数据不确定性,从而提高了锂离子电池的剩余寿命预测的准确性和鲁棒性。
[0114]
最后所应说明的是:以上实施例仅以说明而非限制本发明的技术方案,尽管参照上述实施例对本发明进行了详细说明,本领域的普通技术人员应当理解:依然可以对本发明进行修改或者等同替换,而不脱离本发明的精神和范围的任何修改或局部替换,其均应涵盖在本发明的权利要求范围当中。