基于葵花-8卫星的分钟级降水实时反演估计方法与流程

文档序号:27142609发布日期:2021-10-30 00:55阅读:1339来源:国知局
基于葵花-8卫星的分钟级降水实时反演估计方法与流程
基于葵花

8卫星的分钟级降水实时反演估计方法
技术领域
1.本发明涉及卫星降水反演和定量降水估计技术领域,特别是涉及到基于葵花

8卫星的分钟级降水实时反演估计方法。


背景技术:

2.降水不仅是气象监测和预报的重要要素之一,而且与人民群众的生产生活等密切相关。大雨、暴雨等强对流天气意味着短时间内较大的降水量,是我国主要的灾害性天气系统,能够给社会经济活动带来重大损失,并造成巨大的人员伤亡。由于常规地面观测站的布设比较稀疏,观测时间间隔较长,很难捕捉到强对流天气,因而气象业务上主要利用雷达、卫星等遥感手段来监测短时强降水。与雷达相比较,卫星、尤其是静止气象卫星能够监测更大范围内的云系演变。同时,由于卫星自上而下的扫描方式,回波基本不会受到降水衰减的影响,相比雷达具有更好的空间一致性。因此,卫星遥感遥测是当前监测降水的首要手段,其中的关键是基于卫星观测回波进行降水量反演和估计的客观技术。
3.利用卫星回波反演降水的业务方法是:基于历史观测数据,在相同时间和空间点上,通过客观技术建立卫星单通道或多通道观测亮温与地面降水量之间的定量关系,并结合其他气象资料(例如地面观测、探空曲线等),最终得到卫星降水反演产品。该方法虽然能够得到较高精度的卫星降水反演产品,然而在实时业务实践中无法引用。这是因为方法中涉及的其他气象资料观测时间间隔很长(地面观测为1小时间隔、探空曲线为12小时间隔),与分钟级的卫星观测不匹配。目前,gpm、cmorph等常用卫星降水反演产品的时间间隔均为1~3小时,相比目前静止气象卫星(如葵花

8、风云

4)5~10分钟的观测间隔要长,不适用于实时的降水监测业务。针对这一问题,本发明充分利用高分辨率的卫星数据,发展分钟级的卫星降水反演技术。
4.葵花

8卫星由日本气象厅于2015年7月投入业务运行,可提供13个通道的亮温数据(通道4~16),全圆盘扫描区域覆盖整个东亚地区,空间分辨率为4公里,扫描间隔为10分钟。目前日本气象厅下发的葵花

8卫星资料中尚无降水反演产品,因而本发明基于葵花

8卫星进行开发。


技术实现要素:

5.发明目的:本发明提供了基于葵花

8卫星的分钟级降水实时反演估计方法,充分利用高分辨率的卫星数据,发展分钟级的卫星降水反演技术,从而提高卫星降水反演和定量降水估计准确度。
6.技术方案:为实现上述目的,本发明提出了基于葵花

8卫星的分钟级降水实时反演估计方法,其特征在于:具体步骤如下:步骤一:读取葵花

8卫星亮温数据,并计算其一阶、二阶水平梯度;读取地面自动站降水量数据,并插值到空间网格点上;所述步骤一中亮温tbb的一阶水平梯度g1和二阶水平梯度g2计算公式为:
其中i为经向x格点坐标,j为纬向y格点坐标,和分别为x和y方向的网格距;步骤二:利用逻辑回归定性估计降水的有或无;所述步骤二中定性估计降水概率的公式为:其中上标1、
……
、p表示不同的通道,λ、α、β、γ为实型常数,通过二元逻辑logistic回归方法得到,在进行二元逻辑回归时,自变量为所有通道的tbb、g1和g2,因变量为0

1化的有无降水序列r,定义为: 进一步比较p
rain
和有无降水气候概率p
c
的大小关系,如果,则无降水的概率较大,最终降水量取为零;如果,则存在降水的可能,继续进行后续计算得到具体的降水量,其中p
c
的计算公式为:即在所有空间x、y和时间t网格点上,有降水的格点在所有格点中所占的比例;步骤三:针对上步估计有降水的格点,利用支持向量机回归定量估计降水量的大小;所述步骤三中定量估计降水量的公式为:其中为非线性函数,通过支持向量机回归(svr)估计得到,svr回归的自变量为所有通道的tbb、g1和g2,因变量为非零降水量;步骤四:利用频率匹配法,调整上步估计得到的降水量,保持其分布特征与观测一致;步骤五:生成降水量实时反演格点产品。
7.作为本发明进一步改进,步骤四中调整估计降水量的步骤为:

分别计算观测降水量r和估计降水量的累积概率密度cdf曲线;

选取任意累积概率密度值cdfk,在两条cdf曲线上分别得到cdfk对应的和;

为保证观测和估计的降水量分布相同,得到一一映射关系。
8.本发明基于葵花

8卫星的分钟级降水实时反演估计方法,基于葵花

8卫星进行开发,先通过读取葵花

8卫星亮温数据,并计算其一阶、二阶水平梯度;读取地面自动站降水量数据,并插值到空间网格点上,再利用逻辑回归定性估计降水的有或无,之后针对上步估计有降水的格点,利用支持向量机回归定量估计降水量的大小,再利用频率匹配法,调整上步估计得到的降水量,保持其分布特征与观测一致,最后生成降水量实时反演格点产品,本发明充分利用高分辨率的卫星数据,发展分钟级的卫星降水反演技术。
附图说明
9.图1是方法架构和执行流程图;图2是频率匹配法示意图;图3是实施例地面测站分布示意图;图4是实施例以通道13的云顶亮温数据为例示意图;图5是实施例降水情况示意图;图6是实施例对有降水可能的站点定量估计降水量示意图;图7是实施例调整后降水量示意图。
具体实施方式
10.下面结合附图和具体实施方式,进一步阐明本发明,应理解下述具体实施方式仅用于说明本发明而不用于限制本发明的范围。需要说明的是,下面描述中使用的词语“前”、“后”、“左”、“右”、“上”和“下”指的是附图中的方向,词语“内”和“外”分别指的是朝向或远离特定部件几何中心的方向。
11.本发明工作流程图如图1所示,具体为:首先,获取葵花

8静止气象卫星的亮温(tbb)监测数据和同期的地面自动站降水量(r)观测数据。tbb为三维矩阵的格式,维度分别为纬向、经向、时间。由于地面自动站的位置与卫星观测格点并不完全重合,二者的观测时间间隔亦不相同,因此采用kriging插值方法将r插值到与tbb相同的空间网格点上,采用三次样条函数插值方法将r插值到与tbb相同的时间间隔点上。
12.在每一个时间点上,计算tbb的一阶水平梯度(g1)和二阶水平梯度(g2),公式为:(1)
其中i为经向(x)格点坐标,j为纬向(y)格点坐标,和分别为x和y方向的网格距。
13.其次,客观估计有无降水概率(),估计式为:(2)其中上标(1、
……
、p)表示不同的通道,λ、α、β、γ为实型常数,通过二元逻辑(logistic)回归方法得到。在进行二元逻辑回归时,自变量为所有通道的tbb、g1和g2,因变量为0

1化的有无降水序列(r),定义为:进一步比较和有无降水气候概率(p
c
)的大小关系,如果,则无降水的概率较大,最终降水量取为零;如果,则存在降水的可能,继续进行后续计算得到具体的降水量。其中p
c
的计算公式为:
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(3)即在所有空间(x、y)和时间(t)网格点上,有降水的格点在所有格点中所占的比例。
14.再次,针对上步得到的有降水可能的格点,进行降水的定量估计(),公式为:
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(4)其中为非线性函数,通过支持向量机回归(svr)估计得到,svr回归的自变量为所有通道的tbb、g1和g2,因变量为非零降水量。
15.接着,通过比较观测降水量(r)和估计降水量()的累积概率密度函数(cdf),利用频率匹配法调整估计降水量()的分布,使其与观测保持一致。匹配流程如图2所示:

分别计算r和的cdf曲线;

选取任意累积概率密度值(cdf
k
),在两条cdf曲线上分别得到cdf
k
对应的和;

为保证观测和估计的降水量分布相同,得到一一映射关系。
16.最后,将调整后的估计降水量(非零值)和之前无降水量(零值)整合进同一水平格点场,得到最终的降水量实时反演产品。
17.具体实施例:利用葵花

8卫星观测的云顶亮温数据估计2021年5月12日01世界时的地面降水量;步骤1:针对离散化的地面测站分布(图3),将葵花

8卫星所有通道数据插值到站点上(图4以通道13的云顶亮温数据为例)。
18.步骤2:计算降水的概率(图5)。如果降水概率大于阈值,则有降水;反之,无降水。
在图5中,大于黑色实线的区域表示有降水可能,后续步骤估计具体的降水量;而小于黑色实线的区域表示无降水,即降水量为零。
19.步骤3: 对有降水可能的站点定量估计降水量(图6)。从中可见,存在对降水量范围在0

10 mm之间,存在低估问题。
20.步骤4:对降水量进行调整(图7)。经过调整,降水量分布更加接近真实情况。
21.以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1