一种物流机器人及其定位方法与流程

文档序号:27906453发布日期:2021-12-11 05:10阅读:164来源:国知局
一种物流机器人及其定位方法与流程

1.本发明涉及一种机器人技术领域,特别是关于一种物流机器人及其定位方法。


背景技术:

2.随着社会的不断发展,人类生活水平的不断提高,越来越多搬运任务交由一些能自主运行的物流车来完成,如何实现机器人的实时定位的准确性成了一个不可忽视的问题。人们对定位的要求不断提高,使得室内定位的重要性愈发显著,目前已成为了位置服务研究领域的热点。目前主流的室内定位系统有惯性导航、slam等,但都有着或多或少的问题。ins短时性精度高,但累计误差大、易产生偏移,且成本昂贵。激光slam可以准确测量障碍点的角度与距离但对环境依赖性强。相机作为无源传感器,使得以其为依靠的视觉slam可以无需对场景进行布置且图像具有丰富的信息等优势,但也会产生尺度飘逸等现象。上述问题大多可归结为是由于场景因素或传感器本身工艺而带来的,使得单一传感器在使用时时常出现数据偏差、误差增大等现象。其最好的解决办法就是将多传感器的数据进行融合,使得数据源多元化。多传感器数据融合就是要通过相互补偿、互相纠偏等手段将传感器的数据信息进行有效、合理的数据关联来弥补单一传感器的不足。同时鉴于大多搬运任务往往是要往返于固定的两点间,采用上述方法则会极大地增加成本不利于生产经营,所以需要一种低成本同时能完成具有高精度的定位的物流机器人。


技术实现要素:

3.针对上述问题,本发明的目的是提供一种物流机器人及其定位方法,其定位精度高。
4.为实现上述目的,本发明采取以下技术方案:一种物流机器人的定位方法,其包括:步骤1、获取机器人的车轮驱动电机的当前转速v
d
;步骤2、对机器人上陀螺仪获取的加速度值预处理后,进行复化simpson积分得到陀螺仪测得的当前速度v
a
;步骤3、对机器人上摄像头采集到的图像中相邻两帧图像的特征点进行检测、匹配,得到相邻图像对应特征点在相机坐标系下的位移信息,依据世界坐标系与相机坐标系的转化关系得到该特征点在世界坐标系下的位移量s
w
,对位移量s
w
进行微分运算得到经特征点检测运算得到的车体速度v
v
;步骤4、将当前转速v
d
、当前速度v
a
和车体速度v
v
进行处理得到相对准确的车体速度v,对该车体速度v进行积分运算得到车体已运动过的距离,将目标位置与当前位置进行比较进行位置闭环运算得出电机速度环的目标转速,经角度环运算修正后输入到内环速度环再利用速度闭环来得到电机应有转速,完成定位。
5.进一步,所述步骤1中,采用正解算的方法得到电机当前转速v
d

6.进一步,所述步骤2中,对加速度值的预处理采用最小二乘法线性拟合。
7.进一步,所述步骤3中,采用akaze方法对相邻两帧图像的特征点进行检测、匹配。
8.一种用于实现上述定位方法的物流机器人,其包括底盘,以及设置在所述底盘上的横向移动机构、纵向移动机构、前后移动机构和机械爪手;所述横向移动机构设置在所述
底盘上,纵向移动机构活动设置在所述横向移动机构上,且所述前后移动机构设置在所述纵向移动机构上,所述机械抓手设置在所述前后移动机构上;
9.所述横向移动机构包括第一驱动电机、滑轨、第一主动齿轮、第一从动齿轮、第一同步带和丝杠;所述丝杠的两端设置在所述底盘上,所述滑轨与所述丝杠平行设置在所述底盘上;所述第一驱动电机的外壳固定在所述底盘上,所述第一驱动电机的输出端设置有所述第一主动齿轮,所述第一主动齿轮与所述第一从动齿轮通过所述第一同步带进行传动连接,且所述第一同步带的内侧设置有若干锯齿,所述第一同步带位于所述滑轨的上方;所述纵向移动机构与所述第一同步带啮合,并分别与所述滑轨和丝杠连接,由所述第一驱动电机带动所述第一同步带及所述纵向移动机构在横向上左右移动。
10.进一步,所述纵向移动机构包括连接座、齿条、齿轮和第二驱动电机;所述连接座的底部一端与所述第一同步带的下侧啮合后,与所述滑轨连接,另一端与所述丝杠活动连接,所述齿条的底部固定设置在所述连接座上;所述第二驱动电机设置在所述前后移动机构的底部,且所述第二驱动电机的输出轴与所述齿轮同轴连接,所述齿轮与所述齿条啮合,由所述第二驱动电机带动所述齿轮沿所述齿条进行纵向上下移动。
11.进一步,所述前后移动机构包括连接板、第三驱动电机、第二同步带、传动齿轮、滑道和传动板;该连接板采用凹槽型结构;所述连接板的底部固定设置有所述第二驱动电机,在所述齿轮和齿条的啮合传动下使所述连接板沿所述齿条进行纵向移动;所述连接板的第一端固定设置有所述第三驱动电机,所述第三驱动电机的输出端通过所述传动齿轮与所述第二同步带传动连接,且所述第二同步带内侧设置有若干锯齿;所述传动板的第一端与所述第二同步一侧啮合,由所述第二同步带带动所述传动板进行前后移动,所述传动板11的第二端与与所述滑道连接,所述滑道嵌设在所述连接板的凹槽内,所述机械抓手设置在所述滑道上,由所述第三驱动电机带动所述滑道和机械抓手进行前后移动。
12.进一步,所述机械抓手包括安装座,以及设置在所述安装座上的上抓手、下抓手和第四驱动电机;所述上抓手和下抓手之间通过连接轴连接,所述第四驱动电机的输出端同轴连接有第一传动齿轮,所述连接轴的一端固定设置有第二传动齿轮,所述第一传动齿轮与所述第二传动齿轮啮合,由所述第四驱动电机带动所述连接轴转动,实现所述上抓手与所述下抓手闭合或打开。
13.进一步,所述上抓手和下抓手的一侧设置有摄像头。
14.进一步,所述底盘包括上底板、下底板前板、下底板后板、侧板、车轮驱动电机、电池、固定件和摆动共轴悬挂结构,所述下底板前板和下底板后板活动连接构成下底板;所述下底板的周边设置有所述侧板,所述下底板前板通过所述摆动共轴悬挂结构与所述上底板连接;所述车轮驱动电机设置为四个,分别用于驱动一个全向轮,所述车轮驱动电机的后侧设置有霍尔传感器;所述下底板的中部通过所述固定件固定设置有所述电池。
15.本发明由于采取以上技术方案,其具有以下优点:1、本发明采用akaze进行特征点检测与匹配的核心算法,具有尺度不变性、旋转不变性、光照不变性与所需算力小等优点。2、本发明采用最小二乘法拟合加速度计的读数,并利用复化simpson对拟合后的加速度作积分处理,能获取含有较少噪声的数据。3、本发明采用位置环得到动态的目标速度,采用角度环进行目标速度的修正保证机器人姿态的正确性,采用速度环实现机器人的动态自平衡。4、本发明采用摆动共轴悬挂装置能很好地适应崎岖路面,使得机器人不会因路面崎岖
而导致一轮悬空的现象。5、本发明采用椭圆爪头增大了抓取时的容错率,同时采用镂空设计减轻爪头的重量。6、本发明在机械臂的移动上采用齿轮传动可以有效防止因堵转带来的不良影响。
附图说明
16.图1是本发明实施例中机器人的整体结构示意图;
17.图2是图1的侧视图;
18.图3是本发明实施例中底盘结构示意图;
19.图4是本发明实施例中的定位方法流程示意图;
20.图5是本发明实施例中的车轮驱动电机坐标示意图。
具体实施方式
21.为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本发明保护的范围。
22.在本发明的描述中,需要理解的是,术语“上”、“下”“前”、“后”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
23.如图1、图2所示,本发明提供一种物流机器人,其包括底盘1,以及设置在底盘1上的横向移动机构、纵向移动机构、前后移动机构和机械爪手2。横向移动机构设置在底盘1上,纵向移动机构活动设置在横向移动机构上,且前后移动机构设置在纵向移动机构上,机械爪手2设置在前后移动机构上。
24.在一个优选的实施例中,横向移动机构包括丝杠3、滑轨4、第一驱动电机5、第一主动齿轮6、第一从动齿轮和第一同步带。丝杠3的两端设置在底盘1上,滑轨4与丝杠3平行设置在底盘1上。第一驱动电机5的外壳固定在底盘1上,第一驱动电机5的输出端设置有第一主动齿轮6,第一主动齿轮6与第一从动齿轮通过第一同步带进行传动连接,且第一同步带的内侧设置有若干锯齿,第一同步带位于滑轨4的上方。纵向移动机构与第一同步带啮合,并分别与滑轨4和丝杠3连接,由滑轨4起到支撑及导向作用;使用时,由第一驱动电机5带动第一同步带及纵向移动机构在横向上左右移动。
25.在一个优选的实施例中,纵向移动机构包括连接座、齿条7、齿轮8和第二驱动电机22。连接座的底部一端与第一同步带的下侧啮合后,与滑轨4连接,另一端与丝杠3活动连接,进而沿丝杠3随第一同步带在横向左右移动;齿条7的底部固定设置在连接座上。第二驱动电机22设置在前后移动机构的底部,且第二驱动电机22的输出轴与齿轮8同轴连接,齿轮8与齿条7啮合,进而由第二驱动电机22带动齿轮8沿齿条7进行纵向上下移动。
26.在一个优选的实施例中,前后移动机构包括连接板、第三驱动电机9、第二同步带、传动齿轮、滑道10和传动板11;该连接板采用凹槽型结构。连接板的底部固定设置有第二驱动电机22,在齿轮8和齿条7的啮合传动下使连接板沿齿条7进行纵向移动。连接板的第一端
固定设置有第三驱动电机9,第三驱动电机9的输出端通过传动齿轮与第二同步带传动连接,且第二同步带内侧设置有若干锯齿;传动板11的第一端与第二同步一侧啮合,由第二同步带带动传动板11进行前后移动。传动板11的第二端与滑道10连接,滑道10嵌设在连接板的凹槽内,由传动板11带动滑道10在凹槽内前后移动;机械爪手2设置在滑道10上,使用时,由第三驱动电机9带动滑道10进行前后移动,进而带动机械爪手2进行前后移动。
27.上述实施例中,如图2所示,传动齿轮由第二主动齿轮23和第二从动齿轮24构成,第二主动齿轮23与第三驱动电机9的输出轴同轴连接。第二从动齿轮24设置在连接板的第二端。
28.在一个优选的实施例中,机械爪手2包括安装座,以及设置在安装座上的上抓手、下抓手和第四驱动电机12。上抓手和下抓手之间通过连接轴连接,第四驱动电机的输出端同轴连接有第一传动齿轮,连接轴的一端固定设置有第二传动齿轮,第一传动齿轮与第二传动齿轮啮合,进而由第四驱动电机12带动连接轴转动,实现上抓手与下抓手闭合或打开。
29.上述实施例中,位于上抓手和下抓手的一侧设置有摄像头13,用于获取机器人的周边环境信息。
30.上述实施例中,上抓手和下抓手都采用椭圆型镂空结构,可以有效减轻抓手的重量。
31.上述各实施例中,第一驱动电机5、第二驱动电机22、第三驱动电机9和第四驱动电机12均优选为12v小电机。
32.上述各实施例中,在底盘1上设置有四个全向轮14,通过全向轮14实现机器人的全方位移动。
33.在一个优选的实施例中,如图3所示,底盘1包括上底板、下底板前板15、下底板后板16、侧板17、摆动共轴悬挂结构18、车轮驱动电机19、固定件20和电池21;下底板前板15和下底板后板16活动连接构成下底板。下底板的周边设置有侧板17,且下底板前板15通过摆动共轴悬挂结构18与上底板连接,通过摆动共轴悬挂结构18实现上底板与下底板前板15共轴摆动连接,同时,使机器人在崎岖道路上能摆动保证全向轮14触地。车轮驱动电机19设置为四个,分别用于驱动一个全向轮14;并在车轮驱动电机19的后侧设置有霍尔传感器。下底板的中部通过固定件20固定设置有电池21,用于为各驱动电机供电。
34.上述实施例中,摆动共轴悬挂结构18包括底座和悬挂件。其中,悬挂件的顶部为安装平面,用于与上底板连接;悬挂件的底部为转轴结构,该转轴与底座之间通过钢棒活动连接,进而使得悬挂件可以在底座上进行左右摆动。
35.上述实施例中,车轮驱动电机19采用德科电机。
36.上述各实施例中,位于底盘1中心位置处还设置有陀螺仪。在本实施例中,陀螺仪优选型号为gy

901的九轴陀螺仪。
37.如图4所示,本发明还提供一种物流机器人的定位方法,其包括:
38.步骤1、获取机器人的车轮驱动电机19的当前转速v
d

39.在本实施例中,采用正解算的方法来处理霍尔传感器采集到的数据,进而得到电机当前转速v
d

40.步骤2、对陀螺仪获取的加速度值预处理后,进行复化simpson积分得到陀螺仪测得的当前速度v
a

41.在本实施例中,对加速度值的预处理采用最小二乘法线性拟合;
42.步骤3、对摄像头13采集到的图像中相邻两帧图像的特征点进行检测、匹配,得到相邻图像对应特征点在相机坐标系下的位移信息,依据世界坐标系与相机坐标系的转化关系得到该特征点在世界坐标系下的位移量s
w
,对位移量s
w
进行微分运算得到经特征点检测运算得到的车体速度v
v

43.在本实施例中,采用akaze方法对相邻两帧图像的特征点进行检测、匹配;
44.步骤4、将当前转速v
d
、当前速度v
a
和车体速度v
v
进行处理得到相对准确的车体速度v,对该车体速度v进行积分运算得到车体已运动过的距离,将目标位置与当前位置进行比较进行位置闭环运算得出电机速度环的目标转速,经角度修正后输入到内环速度环再利用速度闭环来得到电机应有转速,完成定位;通过速度环可以实现机器人在有外界干扰的状态下实现动态自平衡,保证机器人以应有速度运行;
45.在本实施例中,为了去除环境噪声,增加数据精准性和稳定性能,对三个速度采用三阶卡尔曼滤波进行数据处理得到相对准确的车体速度v。
46.上述步骤1中,如图5所示,通过正解算对霍尔编码器信息进行解读,得到车轮驱动电机19在x轴、y轴的速度量v
x
、v
y

[0047][0048]
式中,v1、v2、v3、v4分别表示四个车轮驱动电机的转速。根据速度量v
x
、v
y
得到霍尔编码器测得的机器人速度v
d

[0049]
上述步骤2中,采用对预先设定的样本数据进行最小二乘法进行线性拟合来得到之后实时测量数据的预先矫正量。采用线性拟合样本数据,令f=min∑(a
xi

(b0+b1t
i
))2,得到:
[0050][0051]
b0=a
mean

b1t
mean
[0052]
式中,a
xi
表示x轴方向上第i次采样获得的加速度,b0表示待求常亮常数,b1表示待求一阶系数,t
i
表示第i次采样的时间,n表示采样次数,t
mean
表示平均时间,a
mean
表示平均加速度;
[0053]
由此得到拟合的x轴线性加速度计函数a
xt
=b0+b1t
i
,同理得y轴线性加速度计函数a
yt
=b2+b3t
i
,将其与每次所读出的a
x
、a
y
进行加权拟合得到较为准确的a
xt
、a
yt
。采用复化simpson算法对其进行数值积分,假设目标位置为s,则陀螺仪测得的速度值v
a
为:
[0054][0055]
上述步骤3中,采用akaze算法来实现相邻帧之间特征点的检测与匹配,从而获得其在相邻两帧图像中的变化量δx
u
、δy
v
。同时,利用张正友标定法进行相机的标定来获取
相机的内参矩阵和外参矩阵进行相机的畸变矫正。根据相机坐标系与世界坐标系、投影关系以及像素与像平面之间的变化关系来得到整体的转换关系:
[0056][0057]
其中,z
c
表示图像中的像素坐标系的位置向量,u表示像素坐标系下的x值,v表示像素坐标系下的y值,x
w
、y
w
、z
w
分别为世界坐标系下的x、y、z轴的大小,为相机内参矩阵,f
x
、f
y
、c
x
、c
y
为摄像头相应的横向畸变与纵向畸变参数,为外参矩阵,r表示旋转矩阵,t表示偏移向量,f表示相机焦距;
[0058]
从而将特征点在相机坐标系中的δx
u
、δy
v
坐标变化量转化为了其在世界坐标系中的位置差δx
w
、δy
w
、δz
w
。对δx
w
、δy
w
进行微分处理得到车体速度v
v

[0059]
上述步骤4中,三阶卡尔曼滤波处理方法包括:
[0060]
步骤4.1、预估计:
[0061]
v
k
=a
k
‑1v
dk
‑1+b
k

1,k
v
ak
‑1+c
k

1,k
v
vk
‑1;
[0062]
式中,v
k
表示经三阶卡尔曼预测处理后得到的机器人运动速度,a
k
‑1、b
k
‑1、c
k
‑1分别为霍尔编码器得到的速度v
d
、加速度计得到的速度v
a
、视觉检测特征点运算出来的速度v
v
的增益矩阵,v
dk
‑1、v
ak
‑1、v
vk
‑1分别为三种传感器前次采样得到的速度。
[0063]
步骤4.2、计算预估计斜方差矩阵p
k

[0064][0065]
式中,p
k
‑1为上次预估计斜方差矩阵,d
k

1,k
,为相应变化矩阵及其转置矩阵,q为过程误差协方差矩阵
[0066]
步骤4.3、计算卡尔曼增益矩阵k
k

[0067][0068]
式中,为相应的概率矩阵,h
k
、为状态变量到测量(观测)的转换矩阵及其转置矩阵,r
k
为测量噪声的协方差。
[0069]
步骤4.4、更新估计:
[0070]
v
k
=v
k
‑1+k
k
[z
k

h
k
·
v
k
]
[0071]
式中,v
k
‑1为上一次预估值,k
k
为滤波增益矩阵,z
k
为测量值(观测值)。
[0072]
步骤4.5、计算更新后估计斜方差矩阵p
k

[0073]
p
k
=[i

k
k
·
h
k
]p
k
[0074]
进而对各个时间段采集到的v
k
进行积分处理的到机器人已运动的距离s。
[0075]
上述步骤4中,角度修正是通过读取陀螺仪的数据对车体当前姿态进行解读,将其与设定的目标角度进行角度环的自调节运算,以其运算量来修正位置环输出的速度环目标速度。通过角度修正可以消除因外界环境引起的机器人姿态偏转带来的对里程的影响,且
保证机器人的实时姿态。
[0076]
上述各实施例仅用于说明本发明,各部件的结构、尺寸、设置位置及形状都是可以有所变化的,在本发明技术方案的基础上,凡根据本发明原理对个别部件进行的改进和等同变换,均不应排除在本发明的保护范围之外。
[0077]
本领域内的技术人员应明白,本技术的实施例可提供为方法、系统、或计算机程序产品。因此,本技术可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本技术可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、cd

rom、光学存储器等)上实施的计算机程序产品的形式。
[0078]
本技术是参照根据本技术实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
[0079]
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
[0080]
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1