接收线圈装置以及具备该接收线圈装置的磁共振成像装置的制作方法

文档序号:31305721发布日期:2022-08-30 21:09阅读:72来源:国知局
接收线圈装置以及具备该接收线圈装置的磁共振成像装置的制作方法

1.本发明涉及用于发送接收在磁共振成像装置(以下,称为mri装置)中使用的核磁共振信号的线圈装置,特别是涉及头部用拍摄用的接收线圈装置。


背景技术:

2.在mri装置中,对放置于静磁场中的被检体施加高频磁场,并且接收由此感应的核磁共振(nmr)信号,通过对nmr信号进行处理来生成被检体的图像。在高频磁场的施加以及nmr信号的接收中,使用专用的rf线圈。mri装置的线圈根据是发送还是接收、静磁场的方向、覆盖的区域的宽度、拍摄对象部位的形状等,有形态不同的各种线圈装置。接收线圈通过与被检体密接配置而能够得到高的灵敏度,因此在拍摄时安装并装配于被检体的对象部位的接收线圈较多,减轻装配时的麻烦、时间,使被检体无不适感地保持密接性的装配状态(装配性)是重要的课题。
3.另一方面,由于如果在mri的拍摄中存在被检体的体动,则图像劣化,因此需要探测拍摄中的体动,除去体动的影响。特别是在大脑的拍摄等中,即使在存在与图像的分辨率相同程度或比其稍大的程度的头部的动作的情况下,该动作对图像造成的影响也较大。因此,开发了一种根据装配于被检体的头部的接收线圈、标记来探测头部拍摄时的头部的体动的技术。例如,在专利文献1中公开了如下技术:将接收线圈2分割为后头部侧和脸部侧,在载置后头部的一侧的下部配置空气袋,通过探测空气袋的气压的变动来探测头部的动作。此外,还存在如下方法:在被检体的鼻子标注标记,用相机拍摄标记,根据该影像来探测标记的动作即被检体头部的动作。
4.在先技术文献
5.专利文献
6.专利文献1:日本特开2018-27152号公报


技术实现要素:

7.发明要解决的课题
8.在头部的拍摄中,大多将后头部朝下、脸部朝上进行拍摄,但由于载置于线圈或者其支承体的后头部的动作少,因此在专利文献1所记载的方法中,存在无法高灵敏度地探测头部的动作的课题。虽然也考虑在配置于脸部侧的线圈与被检体的前头部之间配置专利文献1所公开的那样的空气袋,但在该情况下,除了线圈装配的工夫之外,存在在线圈与被检体之间的适当的位置配置空气袋这样的麻烦,装配的工作流程降低。
9.此外,在被检体自身安装标记的方法除了需要追加作业、工作流程降低这样的问题之外,还存在鼻子变痒等被检者的舒适性降低、而且尽管头部自身没有动作但有可能仅将鼻子的动作误检测为体动等问题。
10.本发明的课题在于提供一种不降低包括对被检者的接收线圈装配在内的、拍摄前的设置中的工作流程,高灵敏度地检测前头部的动作的技术。
11.用于解决课题的手段
12.本发明通过检测对覆盖头部的前面侧的线圈进行固定的构件(保持架部)的动作来解决上述课题。动作是将支承保持架的基座部、固定于基座部与保持架部之间的检测部检测为物理量。
13.即,本发明的接收线圈装置具备:一个或多个接收线圈,覆盖被检体的头部;基座部,载置被检体的头部;保持架部,固定一个接收线圈,并被基座部支承;以及机构部,使固定于保持架部的接收线圈与头部的一部分密接,还具备对与保持架部的位移相关的物理量进行检测的检测部。
14.在本发明中,检测部也可以由标记和拍摄该标记的相机的组合构成,在该情况下,接收线圈装置也可以具备该组合的一方(例如标记)。
15.此外,本发明的mri装置具备上述的接收线圈装置作为接收线圈。在接收线圈装置的检测部由标记和拍摄该标记的相机的组合构成的情况下,相机能够成为与mri装置连接的结构。
16.发明效果
17.根据本发明,由于检测部固定于支承接收线圈装置的线圈的构件侧,因此仅通过将接收线圈装置装配于被检体这样的作业,能够成为检测部安装于被检体的状态,能够大幅改善线圈装配时的工作流程。此外,根据本发明,由于不是载置于线圈装置的被检体部分(例如后头部),而是检测其相反的一侧(例如前面侧)的动作,因此物理量的检测灵敏度提高。进而,能够消除将标记安装于被检体的情况下的被检体的不协调感、不快感。
附图说明
18.图1是表示应用了本发明的mri装置的一个实施方式的整体结构图。
19.图2是表示发送rf线圈与接收rf线圈的关系的图。
20.图3是表示安装检测部前的接收线圈装置的结构例的图。
21.图4是表示图3的接收线圈装置的装配状态和退避状态的图。
22.图5是表示实施方式1的接收线圈装置的图。
23.图6的(a)~(c)是表示实施方式1~3的体动处理部的结构的图。
24.图7是表示具备实施方式1的接收线圈装置的mri装置的动作的图。
25.图8是表示实施方式1的变形例的接收线圈的配置的图。
26.图9是表示实施方式2的mri装置的动作的图。
27.图10是表示实施方式3的检测部的结构的图。
28.图11是表示实施方式3的变形例的图。
29.符号说明
30.1:mri装置,11:静磁场产生装置,12:发送部,121:发送线圈,13:接收部,131:接收线圈,14:倾斜磁场产生部,15:序列发生器,20:计算机,21:控制部,22:运算部,23:体动处理部,231:体动判定部,232:体动校正部,233:体动量计算部,24:输入设备,25:显示器31:a侧线圈(前侧线圈),32:p侧线圈(后侧线圈),33:颈部用线圈,40:接收线圈装置,41:保持架部,42:基座部,43:保持架支承部,45:引导部,50:检测部,51:测距仪,52:加速度计,53:压力计,55:标记,60:相机。
具体实施方式
31.以下,参照附图,对本发明的接收线圈装置以及mri装置的实施方式进行说明。
32.最初,对应用了本发明的mri装置的一个实施方式进行说明。如图1所示,mri装置1具备:静磁场产生装置11,在放置被检体10的空间产生静磁场;发送部12,对放置于静磁场空间的被检体施加高频磁场脉冲;接收部13,接收通过高频磁场脉冲的照射而从被检体产生的核磁共振信号;倾斜磁场产生部14,产生对核磁共振信号赋予位置信息的倾斜磁场;序列发生器15,使发送部12、接收部13以及倾斜磁场产生部14基于给定的脉冲序列进行动作;信号处理部16;以及计算机20,进行装置整体的控制并且对核磁共振信号进行校正、图像重构等运算。另外,信号处理部16也能够由计算机20执行该功能的一部分或者全部。
33.静磁场产生装置11具备永久磁铁或者常导或者超导等电磁铁和其驱动部,在放置有被检体的拍摄空间中产生均匀的静磁场。在静磁场磁铁中,根据产生的静磁场的方向,有垂直磁场方式、水平磁场方式等,本发明均可采用。此外,有时也配置有用于保持静磁场的均匀度的匀场线圈171和匀场电源172。被检体10通常在载置于卧床18的状态下配置于拍摄空间,以使得拍摄部位大体与静磁场中心一致。
34.发送部12具备未图示的高频发送器以及高频放大器、和发送用的rf线圈(仅为发送线圈)121。发送线圈121配置于拍摄空间内,施加使构成被检体的组织的原子的原子核产生核磁共振的高频磁场脉冲。虽然没有限定,但通常mri装置作为对象的原子核是质子,发送线圈被调整为产生共振频率的高频磁场。
35.接收部13具备接收从被检体产生的核磁共振信号的接收用的rf线圈(简称为接收线圈)131、未图示的放大器、正交检波器以及a/d变换器等,将接收线圈131接收到的核磁共振信号放大后,设为两个系统的数字信号,发送到信号处理部16。在图1中,示出了发送线圈121和接收线圈131分别由不同的线圈构成的情况,但也存在接收线圈兼作发送线圈121的情况,在该情况下,插入切换发送接收的切换器。
36.在图2中示出水平磁场方式的mri装置中的发送线圈121与接收线圈131的配置的一例。在图2所示的例子中,发送线圈121由覆盖配置于静磁场空间的被检体的整体的大小的鸟笼型的rf线圈构成,与发送部12连接。接收线圈131由与被检体的检查部位(在此为头部)密接配置的阵列线圈构成。阵列线圈是排列有多个具有环形状的表面线圈的线圈,分别与接收部13连接。另外,在图2中仅示出两个表面线圈,但表面线圈的数量、配置可以采用各种结构。关于鸟笼型线圈以及多牵引阵列线圈的电路结构,能够采用公知的结构,在本说明书中省略详细的说明,但包括用于调整线圈导体和谐振频率的电路元件,此外,在发送线圈121以及接收线圈131中插入有用于在一方工作时使另一方成为非工作状态的磁耦合防止电路123、133。磁耦合防止电路123、133分别与磁耦合防止电路驱动装置150连接。
37.此外,接收线圈131为了装配于被检体而具备用于支承接收线圈131的支承构造、用于与被检体密接的机构。包括这些构造以及机构而统称为接收线圈装置。本实施方式的mri装置在该接收线圈装置具备检测被检体的体动的检测部50。具备检测部50的接收线圈装置的详细内容后述。
38.倾斜磁场产生部14具备:在相互正交的x、v、z这3轴方向上分别产生倾斜磁场的3组倾斜磁场线圈141;以及驱动各倾斜磁场线圈141的倾斜磁场电源142。
39.序列发生器15在计算机20(控制部)的控制下,向发送部12、倾斜磁场电源142以及
接收部13发送指令。由此,基于设定在序列发生器15中的脉冲序列,进行高频磁场脉冲的产生、来自倾斜磁场线圈141的倾斜磁场脉冲的产生、以及核磁共振信号的接收,收集图像重构所需的核磁共振信号。收集到的核磁共振信号作为k空间数据被传递到计算机20。
40.计算机20由具备cpu和存储器或者gpu和存储器的通用的计算机、工作站构成,具备控制包括序列发生器15的装置整体的控制部21以及进行使用了k空间数据的图像重构等运算的运算部22。控制部21以及运算部22的功能通过cpu(gpu)读入预先收纳于记录装置等的程序来执行。脉冲序列是这样的程序之一,根据拍摄方法存在不同的各种脉冲序列,基于用户根据拍摄目的、部位选择的脉冲序列和用户设定的拍摄参数来决定要执行的脉冲序列。
41.控制部21以及运算部22的功能与公知的mri装置所具备的控制部以及运算部的功能相同,但是,本实施方式的计算机20还输入来自安装于接收线圈装置的检测部50的体动检测信号,基于体动检测信号,进行拍摄的中断、再次开始、nmr信号重新计测等的控制,或者基于体动检测信号对重构图像进行排除体动的影响的校正。因此,在图1中,将为此所需的计算机20的功能表示为体动处理部23。
42.在计算机20连接有用于用户输入拍摄条件、拍摄所需要的指令等的输入设备24、显示计算机20的处理中途的数据、作为处理结果的图像等的显示器25、外部存储装置等存储部。另外,连接包括有线、无线、通过网络的连接。此外,在计算机20中具备用于输入来自外部的计测机的信号的输入端口,经由输入端口获取来自检测部50的体动检测信号。
43.接下来,对接收线圈装置的实施方式进行说明。如上所述,接收线圈装置具备检测被检体的体动的检测部50,但由于检测部50的安装位置根据检测部50的方式而不同,因此首先说明未安装检测器50的状态的接收线圈装置的构造。在图3中示出头部用接收线圈装置40的一例。在以下的说明中,将该接收线圈装置装配于被检体时的被检体的左右方向(图中,x方向)称为接收线圈装置的左右方向,将与左右方向以及被检体的体轴向正交的方向(头部的前后方向:图中y方向)称为上下方向。
44.该接收线圈装置40大致由线圈主体(接收线圈131)和支承线圈主体的机构构成,在图3所示的例子中,作为线圈主体,具备从被检体的头顶部到前头部装配的前侧线圈(称为a侧线圈)31和装配后头部的后侧线圈(称为p侧线圈)32。这些线圈分别与mri装置1的接收部13连接。此外,作为支承线圈主体的机构,具备:固定有a侧线圈31的保持架部41;配置有p侧线圈32的基座部42;以及相对于基座部42支承保持架部41的保持架支承部43。进而,在图3所示的实施方式中,具备用于使p侧线圈从被检体的左右侧面密接于被检体侧的侧面面板44。
45.如图2所示,a侧线圈31以及p侧线圈32能够由排列有多个表面线圈的多阵列线圈构成,在构成表面线圈的各导体环路中,根据需要插入有用于调整线圈的接收频率的电容器、电感器等电路元件,能够接收核磁共振信号。此外,a侧线圈31以及p侧线圈32分别根据所应用的部位的形状、大小来设计表面线圈的大小、数量、配置、电路元件的位置等。例如,覆盖被检体的前面侧的a侧线圈31的未配置有导体环路、电路元件的区域成为与被检体的眼睛对应的部分,将该部分设为开口或者透明。
46.另外,在图3中,作为线圈主体,示出了具备a侧线圈31以及p侧线圈32这两个线圈的情况,但本发明也能够应用于还具备颈部用接收线圈(未图示)等第三、第四线圈的接收
线圈装置、仅具备固定于保持架部41的a侧线圈31的接收线圈装置。
47.接下来,对与支承线圈主体的构造密接的机构进行说明。
48.基座部42由包括非磁性材料的大体板状的构件构成,在上表面配置p侧线圈32,在其上载置被检体的后头部。为了确保p侧线圈32与被检体的密接性,基座部42可以在上表面形成容纳后头部的凹部,也可以在与p侧线圈32之间配置未图示的海绵等缓冲材料。
49.保持架部41由非磁性材料构成的薄板状的构件构成,固定有a侧线圈31。线圈的固定只要是能够装卸螺钉、卡扣等的固定单元就没有特别限定,此外,也可以在1处或者多处进行固定。此外,保持架部41具有从中央向左右方向朝向基座部侧弯曲的细长的形状,中央部分经由保持架支承部43固定于基座部42。保持架部41的长度方向的长度是该弯曲的左右的端部与基座部42稍微分离的长度,通过后述的保持架支承部43进行工作,即使保持架部41改变位置,也不会与基座部42干涉。
50.保持架支承部43在将被检体的头部载置于基座部42时,固定于基座部42,以使得位于被检体的头顶部侧,如图4所示,具备使a侧线圈31从a侧线圈31装配为覆盖被检体的前头部的位置(装配位置)移动至使a侧线圈31退避到被检体的头顶部侧的位置(退避位置)的机构。作为这样的机构,在图示的实施方式中,具备一端被固定于保持架部41的滑动部(可动部)431;以及将滑动部431的另一端与基座部42阶段性发动(段発)地连接的固定部432。
51.滑动部431是弯曲的形状,由固定于保持架部41的外筒和固定于固定部432的内筒构成,通过使内筒在外筒内滑动,能够使沿着该形状固定于外筒前端的保持架部41以及固定于其的a侧线圈31在装配位置与退避位置之间移动。此外,虽未图示,但在滑动部431具备将外筒的移动停止在所希望的位置的限位器。限位器能够采用按钮和与其卡合的孔等公知的结构。滑动部431的可动范围被设计成能够对应被检体的尺寸的不同,无论是头部尺寸大的被检体还是小的被检体,通过在利用固定部432的阶段性发动力(段発力)使a侧线圈31密接于被检体的状态下使限位器工作,从而将该位置作为装配位置来固定保持架部41。但是,作为将a侧线圈31以密接状态装配的结构,限位器不是必须的,例如也可以使用使外筒与内筒的摩擦力大于固定部432的阶段性发动力等其他方法。
52.进而,在图3的实施方式中,在基座部42设置有引导保持架部41的移动的引导部45。引导部45由与弯曲的保持架部41的左端侧和右端侧对应的左右一对板状构件构成,分别相对于基座部42的该主平面方向大体垂直地设置。左右的引导部45被配置为与保持架部41的左右端部相接。由此,保持架部41成为由固定于保持架支承部43的1点和两侧的引导部45这两个接点支承的构造,能够在保持架部41的各位置采取稳定的构造,并且能够在移动时确保稳定的动作。进而,由于左右的2点(接点)未固定于基座部42,因此与被检体头部的体动相伴的保持架部41的动作能够视为与体动一体的动作,通过后述的体动检测用的检测器,能够高精度地检测体动。
53.如以上那样构成的接收线圈装置40在将被检体的后头部载置并密接于基座部42上的p侧线圈32的状态下,使固定了a侧线圈31的保持架部41从退避位置移动到装配位置,将a侧线圈31固定于被检体的前头部。此时,通过利用固定部432的阶段性发动性,能够以密接于被检体的状态进行装配。因此,被检体的头部的动作能够直接作为保持架部41的动作来检测。
54.基于以上的接收线圈装置40的构造,以下,对体动检测用的检测器的实施方式进
行说明,并且对具备各实施方式的接收线圈装置40的mri装置的处理进行说明。
55.<实施方式1>
56.本实施方式的接收线圈装置作为体动检测用的检测器50,使用检测保持架部的端部与基座部的距离的变化的测距仪。
57.以下,参照附图,对测距仪的安装位置和进行测定的物理量进行说明。如图5所示,本实施方式的接收线圈装置40与基座部42的引导部45接近地固定有测距仪51。作为测距仪,能够使用光学式、超声波式、激光式等公知的测距仪,经由未图示的电缆与mri装置连接。测距仪51的位置是能够检测与引导部45相接的保持架部41的端部411的位置的位置,在图示的例子中,固定于基座部42上,以使得与引导部45相接。测距仪51连续地计测保持架部41的端部411与基座部42(测距仪51)的距离,生成与距离或者其变动相当的电信号,并发送至mri装置的控制部21。mri装置获取体动检测信号的采样速度没有特别限定,但在周期性的体动的情况下,优选为比体动周期充分短的周期,此外虽然依赖于脉冲序列但优选为其反复时间tr的数倍以下。
58.测距仪51可以安装于左右的引导部45中的一方的附近,也可以安装于双方。在安装于一方的情况下,能够主要检测被检体头部的上下方向的体动,在安装于左右的情况下,基于左右的动作的非对称性,不仅能够检测上下方向的动作,还能够检测左右方向的动作。
59.本实施方式的mri装置根据来自测距仪51的体动信号,判定是否需要重新计测,根据其结果执行重新计测。因此,如图6的(a)所示,体动处理部23具备体动判定部231。在体动判定部231中预先设定有用于判定体动的大小的阈值。阈值例如可以默认设定,也可以经由mri装置1的输入设备24,用户根据图像的分辨率等设定体动的允许值。
60.接下来,参照图7对从测距仪51输入了体动信号的mri装置1的动作进行说明。当开始摄像时,在控制部21的控制下,根据给定脉冲序列来计测核磁共振信号,开始k空间数据的收集(s1)。
61.体动处理部23(体动判定部21)与摄像的开始同时输入来自测距仪51的体动信号,将通过测距仪51计测出的物理量、即从被固定于基座部42的测距仪到保持架部41的端部411为止的距离或者从初期值的变动值与预先设定的阈值进行比较(s2)。体动判定部21例如在判定为变动值大于阈值时,将重新拍摄在取得了该体动信号的时刻取得的k空间数据的指示发送到控制部(s3)。
62.控制部21进行对产生了无法允许的体动变动的时刻的k空间数据重新计测的控制。在s2中,在判定为体动信号为阈值以下的情况下,继续进行k空间数据的收集直到收集到作为目标的所有k空间数据为止(s4),结束摄像。
63.另外,在图7的流程中,体动暂时或者周期性地以被检体的位置返回最初的设定位置为前提,但在判定步骤s2中,在体动信号连续地超过阈值的情况下,预料被检体的位置从初始位置偏移,因此也可以不进行一部分k空间数据的重新拍摄,而是进行该脉冲序列的重新执行。
64.这样,根据本实施方式,通过在基座部42安装测距仪51作为检测器50,能够将向被检体的线圈装配作业和体动检测器的安装作业一体化。由此,不需要使检测器密接或者安装于被检体的作业,能够大幅改善作业性。此外,由于检测与被检体密接而装配的一部分保持架部的移动,因此实质上能够检测被检体的动作,能够高精度地检测体动,而且,检测器
50的位置远离被检体,因此能够不对mri图像造成影响地检测体动。
65.进而,根据本实施方式,通过仅对存在体动时取得的数据重新拍摄,能够得到不大幅延长拍摄时间而排除了体动的影响的图像。
66.<实施方式1的变形例>
67.在实施方式1中,作为检测体动的检测器50,使用测距仪51,将测距仪51固定于基座部42,但也可以使用加速度计52(变形例1)、压力计53(变形例2)作为检测器50。
68.在图8中示出使用加速度计52或者加压计53的情况的结构例。
69.作为加速度计52,并不限定于此,能够使用静电电容的变化、利用了压电效应的小型的加速度传感器。加速度计52固定于与被检体一体地移动的保持架部41。或者,如图8所示,固定在保持架部41与保持架部41相接的引导部45之间。在这种情况下,也可以固定于保持架部侧和引导部侧中的任一侧。另外,在图8中,示出了在左右两侧配置加速度计52或者压力计53的例子,但也可以仅是任意一方。但是,在配置于两侧的情况下,通过将双方的检测器50的输出(变化量的绝对值)相加,能够提高体动量检测的精度。
70.在这样的配置中,加速度计52主要能够检测保持架部41的上下方向的动作,若保持架部41与被检体的体动一体地移动,则该动作在加速度计52中被探测为静电容量的变化或者压电效应引起的电阻的变化。
71.压力计53能够使用半导体型应变计、静电电容式应变计等公知的小型的应变计,与加速度计52同样地,在保持架部41与保持架部41相接的引导部45之间,固定地使用于其中一方。保持架部41的端部和引导部45以预先施加某程度的压力的状态相接。由此,当保持架部41随着被检体的体动而在左右方向上移动,保持架部41与引导部45之间的压力变化,通过压力计53进行检测。由此,压力计53能够高精度地检测被检体的左右方向的动作。
72.加速度计52、压力计53与实施方式1的测距仪51的情况同样地与mri装置1连接,通过体动处理部23对检测出的信号进行处理。处理的内容与实施方式1相同,因此省略说明。
73.这些变形例的效果也与实施方式1相同,但不仅能够高精度地检测上下方向的动作,还能够高精度地检测左右方向的动作,因此能够适合应用于要求高精度的图像的拍摄。
74.<实施方式2>
75.在实施方式1中,说明了将来自检测部50的体动信号用于是否进行k空间数据的重新取得的判定的情况,但在本实施方式中,mri装置的运算部22在图像重构时使用体动信号来校正图像。因此,如图6的(b)所示,体动处理部23具备体动校正部232。关于图像的体动校正的方法,以往提出了各种方法,均能够采用,但在此,以校正相位编码方向的体动的情况为一例进行说明。
76.相位编码方向由用于摄像的脉冲序列来决定,因此在本实施方式中,为了能够高精度地检测多个方向的体动,在使用测距仪51作为检测器50的情况下,优选在左右两侧使用一对测距仪51。或者,也可以同时采用主要检测上下方向的动作的测距仪51或者加速度计52和主要检测左右方向的动作的压力计53。例如,作为检测器50之一,在左右两侧的引导部45与保持架部41之间设置了压力计53的情况下,若存在左右的体动,则压力的变化的方向不同,因此也能够知道体动的方向。
77.在图9中示出本实施方式的mri装置的处理的流程。
78.当开始摄像时,在控制部21的控制下,根据给定脉冲序列来计测核磁共振信号,开
始k空间数据的收集(s11)。体动处理部23(体动校正部232)在摄像的开始的同时,输入来自检测部50的体动信号,使用由检测部50计测出的物理量、即保持架部41的端部411的上下的位移量以及左右的位移量,计算相位编码方向的位移量δy(s12)。
79.接下来,判定位移量δy是否大于给定的阈值(s13),在大于阈值的情况下,将取得了该体动信号的时间点存储于存储部(未图示),并且计算相位的校正值(s14)。实际空间的位置的变化量(位移量δy)在计测空间中成为与时间成比例的相位变化(δθ=γgyδyt:γ是磁旋转比,gy是相位编码倾斜磁场)。体动校正部232使用位移量δy来计算k空间的相位变化δθ作为校正值。
80.在结束了k空间数据的取得之后(s16),体动校正部232使用计算出的校正值,对检测到体动变化的时间点的k空间数据进行校正(s16)。然后,运算部22使用校正后的k空间数据进行图像重构(s17),与通常的mri装置相同。
81.根据本实施方式,通过将检测器50配置在多个位置,或者配置2种以上的检测器,能够提高能够检测的体动信息的精度。由此,能够事后使用体动信息来校正图像,能够得到不会导致摄像时间的延长且排除了体动的影响的图像。
82.<实施方式3>
83.在实施方式1中,说明了将检测器50安装于接收线圈装置的支承构造的例子,但在本实施方式中,在接收线圈装置的支承构造安装能够由相机检测的标记,根据映现有标记的相机的影像来检测体动。即,在本实施方式中,由安装于支承构造的标记和拍摄该标记的相机构成检测器。mri装置经由输入端口取得来自相机的影像信号,在体动处理部23中进行体动(移动量)的计算。
84.在图10中示出本实施方式中的标记55和相机60的配置例。在图10中,接收线圈装置具备固定了接收线圈(a侧线圈)31的保持架部41和支承保持架部41的基座部42,标记55被安装在保持架部41的大致中央。但是,标记55只要是能够以与相机60的关系进行拍摄的位置,则并不限定于中央,此外,也可以不仅配置一个,还配置多个。此外,标记55的材质、形状只要能够用相机60的影像识别即可,没有特别限定,既可以是保持架部41的一部分,也可以通过螺钉、粘接剂等固定单元固定于保持架部41。
85.相机60被固定在提供被检体插入的检查空间的台架的内部或者台架的外侧且能够拍摄内部的位置。在图10中,示出了1台相机60,也可以是多个。
86.如图6的(c)所示,本实施方式的mri装置的体动处理部23除了体动判定部231以外,还具备体动量计算部233,输入来自相机60的影像,根据标记55的变化计算体动量。体动量的计算例如从每个帧的图像提取标记,计算图像中的标记的位置的变化量。
87.本实施方式中的mri装置的处理的流程除了追加上述的体动量的计算步骤以外,与图7所示的流程相同,在图7的判定步骤s2之前,通过体动量计算部233进行体动量的计算。然后,根据体动量的大小,进行k空间数据的一部分重新拍摄,这与实施方式1相同。
88.根据本实施方式,能够得到与实施方式1相同的效果,并且在接收线圈装置侧不固定与mri装置直接连接的设备等,因此能够完全排除由设备在mri装置中得到的图像的影响。
89.<变形例>
90.本实施方式3是利用相机60拍摄固定于保持架部41的标记55的例子,但也可以如
图11所示,在与引导部45相接的保持架部41的端部形成在上下方向上较长的孔412,并且在能够拍摄保持架部41的端部的位置设置相机60,利用相机60拍摄通过该孔能够看到的引导部45的端部。在这种情况下,也可以在引导部45的端部配置用于提高识别性的标记,也可以在沿着该孔412的上下2处形成表示体动量的允许值的线lmax、lmin。由此,能够在不计算体动量的情况下,判别来自相机影像的体动量是否超过了允许值,能够进行更简便的控制。
91.以上,对接收线圈装置和使用了该接收线圈装置的mri装置的实施方式进行了说明,但本发明并不限定于在这些实施方式、实施方式的说明中使用的附图,能够进行各种变更、追加。例如,在实施方式中,以图所示的构造的接收线圈装置为例对检测部50的配置进行了说明,但检测部50具备使接收线圈与被检体密接的机构,只要是对与被检体一体地移动的构件的动作进行检测的装置即可,能够进行与该机构、构件的方式相应的配置。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1