一种倾转旋翼试验装置

文档序号:29216713发布日期:2022-03-12 11:38阅读:184来源:国知局
一种倾转旋翼试验装置

1.本发明涉及飞行器的测试技术领域,特别是涉及一种倾转旋翼试验装置。


背景技术:

2.倾转旋翼飞行器兼具直升机的垂直飞行能力和固定翼飞机的高速巡航能力,未来在军民用领域都有很大的应用前景。但倾转旋翼的气动环境很复杂,常规的理论方法很难实际计算高度非定常的流场结果,试验是一个设计阶段模拟流场的常用方式。目前的气动试验依赖风洞,以及相匹配的测试设备。倾转旋翼的旋翼轴方向在飞行过程中可以改变,因此要求试验装置与测试设备可以模拟倾转过渡过程,并对这一过程中旋翼的气动载荷进行测量。
3.现有的试验环境中,以静态设备为主。利用风洞产生稳定且均匀的流场,形成相对流动,利用相关的测量设备获取试验数据。申请号为202110392583.7的中国专利公开了一种尾撑式直升机旋翼模型风洞试验装置,该方案记载了一种适用于直升机的尾撑式试验装置。该方案以电机驱动,经由减速器以及锥齿轮换向,实现旋翼的驱动,气动载荷的测量依赖传递链路上的扭矩传感器和六分量测力天平,该装置可以实现旋翼驱动以及气动载荷的直接测量,但不具备驱动旋翼向任意方向倾倒的能力。
4.倾转旋翼机是一种特殊的旋翼类飞行器,其特殊点在于旋翼在工作过程中需要进行倾转以改变工作模式。过渡过程是直升机模式与固定翼模式切换时不得不经历的一个阶段,在这个过程中流场复杂。因此需要在设计时进行详细的分析,保证过渡过程的稳定,而气动载荷的获取则是重中之重。现有的技术可以测量旋翼产生的气动力,但无法模拟倾转旋翼机特有的过渡过程。申请号为202010413232.5的中国专利公开了一种倾转旋翼无人机测试台架,该方案中设置有舵机,舵机的输出轴通过摆动组件与倾转轴连接,舵机的输出轴带动机座固定板绕倾转轴转动,也就是说,该方案利用舵机的驱动实现旋翼的倾转,但是,只能实现对旋翼的一个方向的倾转,而实际上旋翼还存在朝向不同方向的侧倾,因此,该方案模拟测试与实际工况差别较大,不能模拟真实的旋翼倾转的过渡过程。
5.因此,如何能够实现试验环境下连续倾转过渡过程的流场仿真与载荷测量,通过试验模拟过渡过程中可能出现的非定常现象是亟待解决的技术问题。


技术实现要素:

6.本发明的目的是提供一种倾转旋翼试验装置,以解决上述现有技术存在的问题,通过将旋翼测量结构安装在万向铰结构的一个转轴上,实现旋翼测量结构的多自由度转动,在倾转驱动结构的驱动作用下,能够控制旋翼测量结构的倾转,进而能够模拟旋翼的倾转工作过程,并依靠倾转驱动结构的支撑端的移动实现旋翼的不同侧倾方向,模拟更贴合实际的工况,获得更有效的数据。
7.为实现上述目的,本发明提供了如下方案:
8.本发明提供一种倾转旋翼试验装置,包括台架、万向铰结构、旋翼测量结构以及倾
转驱动结构,所述万向铰结构包括相互垂直的第一转轴和第二转轴,所述第一转轴安装在所述台架上,所述第二转轴安装有所述旋翼测量结构;所述倾转驱动结构的驱动端能够驱动所述旋翼测量结构绕所述第一转轴转动,所述倾转驱动结构的支撑端能够沿平行于所述第一转轴的方向移动。
9.优选地,所述万向铰结构包括内支撑环和外支撑环,所述第一转轴分成两段固定在所述外支撑环的侧壁上,所述第二转轴分成两段安装在所述内支撑环和所述外支撑环之间,所述内支撑环用于连接所述旋翼测量结构。
10.优选地,所述倾转驱动结构为作动筒,所述作动筒的支撑端连接在平行于所述第一转轴的第三转轴,所述第三转轴滑动套设在轴套内,所述轴套通过轴承安装在所述台架上。
11.优选地,所述第一转轴和所述第三转轴在所述台架上的安装高度不同。
12.优选地,所述台架为u型支架,所述第一转轴和所述第三转轴安装在所述u型支架的竖向支臂上。
13.优选地,所述u型支架包括对接连接的l型板,所述l型板的转角处设置有加强肋板。
14.优选地,所述旋翼测量结构包括轴向连接的动力部和测量部,所述万向铰结构和所述作动筒均安装在所述动力部上。
15.优选地,所述动力部包括电机和连接在所述电机上的驱动轴段,所述驱动轴段包括第一外壳和设置在所述第一外壳内的第一套筒,所述第一套筒两端部分别设置有第一轴承,所述第一轴承内安装有驱动轴;所述作动筒的驱动端和所述内支撑环均安装在所述第一外壳上。
16.优选地,所述测量部包括顺次设置的扭矩测量段、六分量测力天平段和旋翼轴段,所述扭矩测量段安装在所述第一外壳上。
17.优选地,所述旋翼轴段包括第二外壳和设置在所述第二外壳内的第二套筒,所述第二套筒两端部分别设置有第二轴承,所述第二轴承内安装有旋翼轴,所述旋翼轴与所述驱动轴之间连接有扭矩传感器。
18.本发明相对于现有技术取得了以下技术效果:
19.(1)本发明通过将旋翼测量结构安装在万向铰结构的一个转轴上,实现旋翼测量结构的多自由度转动,在倾转驱动结构的驱动作用下,能够控制旋翼测量结构的倾转,进而能够模拟旋翼的倾转工作过程,并依靠倾转驱动结构的支撑端的移动实现旋翼的不同侧倾方向,模拟更贴合实际的工况,获得更有效的数据;
20.(2)本发明可以通过控制作动筒的支撑端的轴向移动,实现对于旋翼测量结构的侧倾的控制,从而能够拓展装置的功能,通过改变旋翼在流场中的侧倾角,用于模拟更多的飞行状态;
21.(3)本发明第一转轴和第三转轴在台架上的安装高度不同,如果第一转轴和第二转轴高度一致,那么驱动倾转的过程中,当旋翼轴水平时,会出现驱动死点,因此,本发明能够避免死点的出现,即能够顺利驱动旋翼测量结构的转动角度;
22.(4)本发明台架为u型支架,第一转轴和第三转轴安装在u型支架的竖向支臂上,利用u型支架实现稳定的支撑和固定,能够排出固定不良造成的干扰,另外,u型支架采用l型
板对接形成,能够提高安装方便程度,并在l型板的转角处设置有加强肋板,能够保证u型支架的整体结构强度。
附图说明
23.为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
24.图1为本发明整体结构示意图;
25.图2为本发明万向铰结构示意图;
26.图3为本发明作动筒连接状态示意图;
27.图4为本发明旋翼测量结构示意图;
28.图5为图4的内部结构剖视图;
29.图6为本发明台架结构示意图;
30.其中,1、台架;11、l型板;12、加强肋板;2、万向铰结构;21、第一转轴;22、第二转轴;23、内支撑环;24、外支撑环;3、旋翼测量结构;31、电机;32、驱动轴段;321、第一外壳;322、第一套筒;323、第一轴承;33、扭矩测量段;331、扭矩传感器;332、销轴;333、连接套筒;34、六分量测力天平段;35、旋翼轴段;351、第二外壳;352、第二套筒;353、第二轴承;36、旋翼轴;37、驱动轴;4、倾转驱动结构;41、作动筒;42、第一连接件;43、第三转轴;44、第二连接件。
具体实施方式
31.下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
32.本发明的目的是提供一种倾转旋翼试验装置,以解决现有技术存在的问题,通过将旋翼测量结构安装在万向铰结构的一个转轴上,实现旋翼测量结构的多自由度转动,在倾转驱动结构的驱动作用下,能够控制旋翼测量结构的倾转,进而能够模拟旋翼的倾转工作过程,并依靠倾转驱动结构的支撑端的移动实现旋翼的不同侧倾方向,模拟更贴合实际的工况,获得更有效的数据。
33.为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
34.如图1~6所示,本发明提供一种倾转旋翼试验装置,包括台架1、万向铰结构2、旋翼测量结构3以及倾转驱动结构4,其中,台架1为支撑整个试验装置的基础框架,可以采用板状结构拼接而成,也可以采用框架梁等结构组装而成,具体的结构根据其安装的部件的位置和承载需求进行设置,并不局限于一种形式。旋翼测量结构3可以采用现有技术中用于测量旋翼运行状态的结构,包括能够提供旋翼转动的动力机构和支撑结构以及其他一系列的传感器等测量部件。万向铰结构2能够实现多个自由度的运动状态的改变,具体的,包括
相互垂直的第一转轴21和第二转轴22,第一转轴21和第二转轴22均安装在万向铰结构2本体上,第一转轴21安装在台架1上,并能够相对于台架1进行转动,包括两种情况,一种是第一转轴21转动安装在万向铰结构2的本体上,一种是第一转轴21固定安装在万向铰结构2的本体上,但转动安装在台架1上;相应的,第二转轴22也可以固定旋翼测量结构3后再转动安装在万向铰结构2的本体上或固定安装在万向铰结构2的本体上再转动安装固定旋翼测量结构3;无论第一转轴21和第二转轴22的安装形式如何,均能够实现旋翼测量结构3的多自由度转动。倾转驱动结构4可以采用气动缸、液压缸等伸缩结构或直线舵机等直线驱动结构,具有驱动端和支撑端,驱动端连接在旋翼测量结构3上,通过驱动端的移动能够驱动旋翼测量结构3绕第一转轴21转动,支撑端安装在台架1上或另外的支撑结构上,并能够沿平行于第一转轴21的方向移动,也就是说,通过驱动端的移动能够使得旋翼测量结构3具有绕第一转轴21转动的自由度,通过支撑端的移动能够使得旋翼测量结构3具有绕第二转轴22转动的自由度;需要说明的是,驱动端与旋翼测量结构3的连接方式应采用铰接的方式,铰接后倾转驱动结构4只能沿其所在平面内移动,此时倾转驱动结构4的驱动端和支撑端应能够相对转动,铰接后倾转驱动结构4可以沿各个自由度转动,此时,倾转驱动结构4的驱动端和支撑端不需要能够相对转动。本发明通过将旋翼测量结构3安装在万向铰结构2的一个转轴上,实现旋翼测量结构3的多自由度转动,在倾转驱动结构4的驱动作用下,能够控制旋翼测量结构3的倾转,进而能够模拟旋翼的倾转工作过程,并依靠倾转驱动结构4的支撑端的移动实现旋翼的不同侧倾方向,模拟更贴合实际的工况,获得更有效的数据。
35.如图2所示,万向铰结构2可以包括内支撑环23和外支撑环24,内支撑环23和外支撑环24同心套设在一起,第一转轴21分成两段固定在外支撑环24的侧壁上,此时,为实现第一转轴21的转动,两段第一转轴21的端部应采用轴承等形式转动安装在台架1上;第二转轴22也可以分成两段安装在内支撑环23和外支撑环24之间,此时,两段第二转轴22与内支撑环23和外支撑环24之间应设置有转动副,内支撑环23用于连接旋翼测量结构3,具体连接时,可以采用压盖、螺栓等常用的连接方式。
36.如图3所示,倾转驱动结构4可以为作动筒41,作动筒41包括驱动端和支撑端,驱动端和支撑端之前可以相互轴向滑动和周向转动,其中轴向滑动为主动驱动运行,周向转动为被动运行;作动筒41的驱动端设置有第一连接件42,第一连接件42卡箍在旋翼测量结构3上,作动筒41的支撑端设置有第二连接件44,第二连接件44卡箍在平行于第一转轴21的第三转轴43上,第三转轴43滑动套设在轴套内,轴套通过轴承安装在台架1上,通过轴套和轴承的设置,可以使得第三转轴43既能相对于台架1转动又能相对于台架1轴向滑动。当旋翼侧向的气动力和力矩带动旋翼侧倾(旋翼测量结构3绕第二转轴22转动)时,作动筒41的驱动端和支撑端相互转动,带动第三转轴43沿轴向滑动,若不希望旋翼侧倾,可以对第三转轴43施加约束,通过限制第三转轴43的轴向滑动来控制旋翼的侧倾。
37.结合图1所示,第一转轴21和第三转轴43在台架1上的安装高度不同,如果第一转轴21和第三转轴43高度一致,那么驱动旋翼测量结构3倾转的过程中,当旋翼轴36(安装在旋翼测量结构3内)水平时,会出现驱动死点,因此,本发明能够避免死点的出现,即能够顺利驱动旋翼测量结构3的转动角度。
38.如图6所示,台架1可以为u型支架,u型支架包括横向的底板和竖向的支臂,底板可以用于稳定固定支臂,第一转轴21和第三转轴43安装在u型支架竖向的支臂上,支臂可以采
用板状结构,上部开设有安装孔,将第一转轴21和第二转轴22的轴承安装在安装孔内。
39.u型支架可以由l型板11对接连接形成,l型板11本身包括的横板和竖板可以分体安装也可以是一整块板弯折形成,在l型板11与l型板11对接的位置设置有相配合的凸块和凹槽,通过将凸块卡接入凹槽内实现安装固定,在l型板11的转角处还可以设置有加强肋板12,加强肋板12通过螺栓或者焊接的方式固定在l型板11上,以加固l型板11的稳定性。
40.如图1、图3~5所示,旋翼测量结构3包括轴向连接的动力部和测量部,动力部主要包括旋翼旋转的动力输出单元,测量部主要包括各种传感器等测量单元,万向铰结构2和作动筒41均安装在动力部上。
41.动力部可以包括电机31和连接在电机31上的驱动轴段32,驱动轴段32主要用于支撑驱动轴37的旋转,而驱动轴37将动力再通过旋翼轴36输出到旋翼上。驱动轴段32包括第一外壳321和设置在第一外壳321内的第一套筒322,第一外壳321通过法兰和螺栓安装在电机31壳体的端部;第一套筒322两端部分别设置有第一轴承323,第一套筒322用于支撑第一轴承323的外圈,第一轴承323的内圈安装在驱动轴37上,在第一外壳321的端部还可以设置有轴承端盖,以固定第一轴承323的轴向位置。作动筒41的驱动端通过第一连接件42卡箍在第一外壳321上,万向铰结构2的内支撑环23套设并固定在第一外壳321上。
42.测量部可以包括顺次设置的扭矩测量段33、六分量测力天平段34和旋翼轴段35,各段均设置有壳体,壳体的端部设置有法兰,通过法兰实现各段的连接固定,扭矩测量段33的壳体安装在第一外壳321壳体的端部上。
43.旋翼轴段35包括第二外壳351和设置在第二外壳351内的第二套筒352,第二外壳351通过法兰和螺栓安装在六分量测力天平段34壳体的端部。第二套筒352两端部分别设置有第二轴承353,第二套筒352用于支撑第二轴承353的外圈,第二轴承353的内圈安装在旋翼轴36上,在第二外壳351的端部还可以设置有轴承端盖,以固定第二轴承353的轴向位置。旋翼轴36上用于安装旋翼,从而本发明能够将测量部直接连接在旋翼下方,旋翼上的气动载荷经过旋翼轴36直接传导至测量部上,可以快捷地测量旋翼系统三个方向的力与力矩,以及随旋翼倾角的动态变化。旋翼轴36与驱动轴37之间连接有扭矩传感器331,扭矩传感器331安装在扭矩测量段33内,并通过扭矩传感器331两端的连接套筒333分别利用销轴332连接在驱动轴37和旋翼轴36上。
44.常规的测力系统可以测量定常状态下的固定翼或稳定旋转状态下的旋翼气动载荷,但倾转旋翼机作为一种特定的飞行器构型,其旋翼有着特殊的运动方式,除了绕旋翼轴36的旋转运动外,还有绕着倾转轴(相当于本发明装置的第一转轴21)的倾转运动,因此,常规的测力系统无法对倾转过程中的旋翼进行测量。本发明采用电机31直驱的方式,通过驱动轴37、旋翼轴36带动旋翼转动,并引入万向铰结构2,使得旋翼轴36可以进行俯仰(绕第一转轴21转动)和滚转(绕第二转轴22转动)两个方向的运动。通过对倾转驱动结构4的控制,实现对旋翼轴36倾转角度的控制。试验时,旋翼可以在风洞试验段的直匀流中倾转,从而可以实现倾转过程中高度非定常环境的模拟,获取关键的旋翼载荷。
45.倾转旋翼机也会面临机动飞行的状态。旋翼相对于来流在俯仰方向和滚转方向都会有不同的角度状态,本发明两个自由度的转动(第一转轴21和第二转轴22)可以满足旋翼在不同姿态角下的试验状态需求。
46.在本发明的试验装置实际使用时,需要根据倾转旋翼试验件的预估载荷以及行程
需求设计试验装置的尺寸。相应的标准件同样需要根据使用情况合理选取。当该试验装置使用时,作动筒41是驱动装置,通过伸缩调整旋翼测量结构3进而调整旋翼轴36的倾转角度。若旋翼产生侧向力和力矩则会带动旋翼向侧向倾倒,此时可以带动第三转轴43轴向滑动。利用本发明的试验装置可以测量出旋翼动态过程中的气动载荷。
47.本发明中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1