一种体温检测方法、装置、电子设备及存储介质与流程

文档序号:29815382发布日期:2022-04-27 10:02阅读:136来源:国知局
一种体温检测方法、装置、电子设备及存储介质与流程

1.本公开涉及体温传感器技术领域,尤其涉及一种体温检测方法、装置、电子设备及存储介质。


背景技术:

2.现有的人体温度测量根据温度探头的形式分为两类:一类是接触式,利用热平衡方法获得体温,探头可以是热敏电阻、铂电阻、水银等,这个方法是目前测量体温的标准方法,缺点是由于达到热平衡需要一定的时间,所以测量时间长。另一类是非接触式,利用人体热辐射获得体温,探头可以是红外传感器,这个方法的特点是测量时间短,但是测量误差较大。医用体温测量为了获得准确的体温,所以一般采用第一种方法(接触式),这类测量又分成连续式测量和预测式测量两种。
3.连续测量体温计是将温度探头与待测部位紧密接触,并实时、连续地显示待测部位的温度,由于人体和测温元件之间的热传导需要一个过程,所以此方法测量体温需要较长时间,一般腋下测量为5分钟。但是对腋下体表体温实时跟踪时,简单的读取热平衡后,传感器获取的温度值还远远不够。必须考虑手臂的运动,造成的腋下恒温环境的破坏,导致体表温度的下降。由于手臂活动,造成传感器热平衡环境的破坏,不断的升温,热平衡,降温,再升温,再次热平衡的循环。因此如何尽可能的屏蔽手臂活动带来的温度测量值的波动。


技术实现要素:

4.有鉴于此,本公开实施例提供一种体温检测方法,至少部分解决现有技术中存在的问题。
5.第一方面,本公开实施例提供了一种体温检测方法,所述体温检测方法包括:
6.采集人体温度t
传感

7.判断当前采集的人体温度t
传感
与人体实际温度t
实际
之间的差值;
8.根据采集的人体温度t
传感
和人体实际温度t
实际
之间的差值确定温度补偿值t
补偿

9.显示增加温度补偿值t
补偿
后的温度值。
10.根据本公开实施例的一种具体实现方式,,所述判断当前采集的人体温度t
传感
与人体实际温度t
实际
之间的差值之前还包括:
11.判断人体是否处于发烧状态;
12.在人体未处于发烧状态时,进入判断当前采集的人体温度t
传感
与人体实际温度t
实际
之间的差值的步骤。
13.根据本公开实施例的一种具体实现方式,所述采集人体温度t
传感
的步骤之前,还包括:
14.采集多时点下的人体温度t
传感

15.计算采集的人体温度t
传感
与人体实际温度值t
实际
之间的差值;
16.根据所述差值拟合得到温度补偿曲线。
17.根据本公开实施例的一种具体实现方式,所述温度补偿曲线满足t
补偿
=(t
实际-t
传感
)/a,其中t
实际
取值为36.5~37℃,a的取值范围为1~2。
18.根据本公开实施例的一种具体实现方式,所述根据所述差值拟合得到温度补偿曲线的步骤包括:
19.利用深度学习模型拟合得到温度补偿曲线。
20.根据本公开实施例的一种具体实现方式,所述根据采集的人体温度t
传感
和人体实际温度t
实际
之间的差值确定温度补偿值t
补偿
的步骤包括:
21.在采集的人体温度t
传感
与人体实际温度t
实际
之间的差距大于预设值时,对所采集的温度进行预处理,所述预处理的方式为在所采集的人体温度t
传感
的基础上增加第一温度补偿值;
22.在采集的人体温度t
传感
与人体实际温度t
实际
之间的差距小于预设值时,对所采集的温度进行预处理,所述预处理的方式为在所采集的人体温度t
传感
的基础上增加第二温度补偿值。
23.第二方面,本公开实施例提供了一种体温检测装置,所述体温检测装置包括:
24.采集模块,用于采集人体温度t
传感

25.第一判断模块,用于判断当前采集的人体温度t
传感
与人体实际温度t
实际
之间的差值;
26.温度补偿模块,用于根据采集的人体温度t
传感
和人体实际温度t
实际
之间的差值确定温度补偿值t
补偿

27.显示模块,用于显示增加温度补偿值t
补偿
后的温度值。
28.第三方面,本公开实施例还提供了一种电子设备,该电子设备包括:
29.至少一个处理器;以及,
30.与该至少一个处理器通信连接的存储器;其中,
31.该存储器存储有可被该至少一个处理器执行的指令,该指令被该至少一个处理器执行,以使该至少一个处理器能够执行前述第一方面或第一方面的任一实现方式中的体温检测方法。
32.第四方面,本公开实施例还提供了一种非暂态计算机可读存储介质,该非暂态计算机可读存储介质存储计算机指令,该计算机指令用于使该计算机执行前述第一方面或第一方面的任一实现方式中的体温检测方法。
33.第五方面,本公开实施例还提供了一种计算机程序产品,该计算机程序产品包括存储在非暂态计算机可读存储介质上的计算程序,该计算机程序包括程序指令,当该程序指令被计算机执行时,使该计算机执行前述第一方面或第一方面的任一实现方式中的体温检测方法。
34.本公开实施例中的体温检测方法,所述体温检测方法包括:采集人体温度t
传感
;判断当前采集的人体温度t
传感
与人体实际温度t
实际
之间的差值;根据采集的人体温度t
传感
和人体实际温度t
实际
之间的差值确定温度补偿值t
补偿
;显示增加温度补偿值t
补偿
后的温度值。本公开实施例中t
补偿
的引入,直接效果是通过数据处理方式,在软件层面将热平衡呈现的时间缩短,相当于起到提前预判的作用。热平衡呈现的时间缩短,最直观的好处是提升用户体验感,特别是刚开始测量跟踪的时候,能够快速的提升显示的体温。
附图说明
35.为了更清楚地说明本公开实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
36.图1为本公开实施例提供的一种体温检测方法的流程示意图;
37.图2为本公开实施例提供的一种体温检测装置的模块示意图;
38.图3为本公开实施例提供的体温检测方法中的电子体温计的热量传递示意图;
39.图4为本公开实施例提供的体温检测方法中的电子体温计的理想情况下的升温示意图;
40.图5为本公开实施例提供的体温检测方法中的电子体温计的真实情况下的升温示意图;
41.图6为本公开实施例提供的体温检测方法中的电子体温计的加入了手臂活动之后的升温示意图;
42.图7为本公开实施例提供的体温检测方法中的电子体温计的加入了温度补偿值后的升温对比图;
43.图8为本公开实施例提供的电子设备示意图。
具体实施方式
44.下面结合附图对本公开实施例进行详细描述。
45.以下通过特定的具体实例说明本公开的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本公开的其他优点与功效。显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。本公开还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本公开的精神下进行各种修饰或改变。需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
46.需要说明的是,下文描述在所附权利要求书的范围内的实施例的各种方面。应显而易见,本文中所描述的方面可体现于广泛多种形式中,且本文中所描述的任何特定结构及/或功能仅为说明性的。基于本公开,所属领域的技术人员应了解,本文中所描述的一个方面可与任何其它方面独立地实施,且可以各种方式组合这些方面中的两者或两者以上。举例来说,可使用本文中所阐述的任何数目个方面来实施设备及/或实践方法。另外,可使用除了本文中所阐述的方面中的一或多者之外的其它结构及/或功能性实施此设备及/或实践此方法。
47.还需要说明的是,以下实施例中所提供的图示仅以示意方式说明本公开的基本构想,图式中仅显示与本公开中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。
48.另外,在以下描述中,提供具体细节是为了便于透彻理解实例。然而,所属领域的技术人员将理解,可在没有这些特定细节的情况下实践所述方面。
49.假设电子体温计温度传感器初始温度低于人体温度,则其夹于腋下时,其热量传递情况如图3所示。
50.则,热敏传感器获得用于升温的有效热量(h
有效
)为:
51.h
有效
=h
吸热-h
散热
52.那么:
53.h
有效
>0时,传感器温度不断上升;同时,随着温差的减小,升温速度逐步变慢。
54.h
有效
=0时,传感器吸收到的热能与对外散发的热能相等,即达到一种热传递平衡状态,温度变得恒定。
55.在热平衡状态时,由于传感器存在对外的散热,那么此时,传感器的温度与人体腋下的温度仍然存在一个温度差值。则人体温度(t
人体
)和传感器温度(t
传感器
)之间的关系为:
56.t
人体
=t
传感器
+t
δ
57.其中,t
δ
为两者之间的温度差值。
58.由于我们很容易知道,h
散热
非常微小,不难得出:热平衡情况下,上面公式中的t
δ
可以忽略不计,所以,一般我们认为,此时体温计测定的温度就是人体的体表温度,即:
59.t
人体
≈t
传感器
60.此过程即为,电子体温计的测温过程,其理想的升温过程即为图4所示。
61.工程实验可发现,人体的体温有波动。即使人体不进行手臂活动,紧夹住体温计的情况下,其电子体温计的升温过程一般与图5较为相像:
62.作为单次体温测量时,热平衡后,读取传感器获取的温度即可得到近似的体表温度值(t
人体
)。
63.但是,对腋下体表体温实时跟踪时,简单的读取热平衡后,传感器获取的温度值还远远不够。必须考虑手臂的运动,造成的腋下恒温环境的破坏,导致体表温度的下降。
64.考虑到进行体温实时跟踪最多的场景为人体发烧场景,则我们在实际操作,只需要考虑手臂夹臂小幅度、短时间的活动情况。如图6所示。
65.整个温度跟踪过程中,由于手臂活动,造成传感器热平衡环境的破坏,不断的升温,热平衡,降温,再升温,再次热平衡的循环。
66.那么热平衡时间较长,如何缩短?特别是第一次热平衡的时长较大程度影响了温度检测装置检测的精确性。
67.针对上述问题,本公开实施例提供一种体温检测方法。本实施例提供的体温检测方法可以由一计算装置来执行,该计算装置可以实现为软件,或者实现为软件和硬件的组合,该计算装置可以集成设置在服务器、终端设备等中。
68.参见图1,本公开实施例提供的一种体温检测方法,所述体温检测方法包括:
69.步骤s100,采集人体温度t
传感

70.本公开实施例中,优选采用电子体温计测量人体腋下温度。本公开实施例的电子体温计可以是通过内置的热敏传感器来感测人体温度,在其他实施例中,也可以通过红外传感器来检测人体温度。
71.步骤s200,判断当前采集的人体温度t
传感
与人体实际温度t
实际
之间的差值;
72.进一步判断采集的人体温度和人体实际温度之间的差值,人体实际温度的值为一设定的定值,正常人体温度一般为36.5~37℃,本公开实施例取人体实际温度为37℃。
73.步骤s300,根据采集的人体温度t
传感
和人体实际温度t
实际
之间的差值确定温度补偿值t
补偿

74.根据采集的人体温度和人体实际温度之间的差值确定温度补偿值,根据实验数据的拟合得到温度补偿值满足以下公式:t
补偿
=(t
实际-t
传感
)/a,其中t
实际
取值为36.5~37℃,a的取值范围为1~2,本实施例中a取1.5。
75.步骤s400,显示增加温度补偿值t
补偿
后的温度值。
76.最终在电子体温计上显示增加了温度补偿值后的温度值。参见图7为加入温度补偿值后的升温曲线图。
77.本公开实施例中t
补偿
的引入,直接效果是通过数据处理方式,在软件层面将热平衡呈现的时间缩短,相当于起到提前预判的作用。热平衡呈现的时间缩短,最直观的好处是提升用户体验感,特别是刚开始测量跟踪的时候,能够快速的提升显示的体温。此外通过引入t
补偿
后,能够在数据上减小夹臂小幅度活动给测量值带来的波动。偶然的手臂运动,造成的腋下体表温度突然下降又恢复,采用此种数据处理方法后,将会使呈现的数值更平滑,更稳定,起到屏蔽干扰数据的作用。这对体温的连续性跟踪,有很重要的帮助。
78.基于第一实施例,本公开的第二实施例中,所述判断当前采集的人体温度t
传感
与人体实际温度t
实际
之间的差值之前还包括:
79.判断人体是否处于发烧状态;
80.在人体未处于发烧状态时,进入判断当前采集的人体温度t传感与人体实际温度t实际之间的差值的步骤。
81.本公开实施例通过在实时采集人体温度的同时,判断采集的人体温度是否超过人体正常温度值,即37℃,即判断人体是否处于发烧状态。因为发烧情况(例如为39℃),传感器热平衡后温度值为接近正常体温值(例如,38.95℃)。
82.考虑到体温跟踪设备是无法预知被测量对象是否发烧。如果发烧场景下,要进行温度补偿,只能将计算公式中的t人体设置为37℃~39℃之间的数值。那么,反过来会影响正常体温时的温度测量。
83.故,在t
传感
>37℃时,t补偿=0,不再进行温度补偿。其实,当人体发烧的时候,其热量的对外传递相对正常时候,呈大幅度提升,故传感器的升温速度也会大幅度加速。
84.由于本公开实施例将应用范围限制在37℃以下,故并不会对发烧情况的数据造成人为影响,也不会造成一些不可预测场景下,体温跟踪值的失真。
85.基于第二实施例,本公开的第三实施例中,所述采集人体温度t
传感
的步骤之前,还包括:
86.采集多时点下的人体温度t
传感

87.计算采集的人体温度t
传感
与人体实际温度值t
实际
之间的差值;
88.根据所述差值拟合得到温度补偿曲线。
89.本公开实施例公开了t
补偿
=(t
实际-t
传感
)/a中系数a的拟合方法。本公开实施例通过采集多个人体温度数值,来与人体实际温度值进行拟合,得到a的拟合数值。在本实施例中的方法中,a的取值范围为1~2。
90.进一步地,所述根据人体温度和人体实际温度之间的差值确定温度补偿值的步骤包括:
91.在采集的人体温度t传感与人体实际温度t实际之间的差距大于预设值时,对所采集的温度进行预处理,所述预处理的方式为在所采集的人体温度t传感的基础上增加第一温度补偿值;在这种情况下,a的取值为1.5,此时t
补偿
=(t
实际-t
传感
)/1.5。
92.在采集的人体温度t传感与人体实际温度t实际之间的差距小于预设值时,对所采集的温度进行预处理,所述预处理的方式为在所采集的人体温度t传感的基础上增加第二温度补偿值。在这种情况下,a的取值为2,此时t
补偿
=(t
实际-t
传感
)/2。
93.随着测量温度的不断上升,与人体温度之间的差异越来与小,此时需要的热量补偿也会随之发生变化。因此,本实施例设定两种不同情况下t
补偿
的不同数值,提高温度测量的精确性。
94.与上面的方法实施例相对应,参见图2,所述体温检测装置包括:
95.采集模块,用于采集人体温度t
传感

96.第一判断模块,用于判断当前采集的人体温度t
传感
与人体实际温度t
实际
之间的差值;
97.温度补偿模块,用于根据采集的人体温度t
传感
和人体实际温度t
实际
之间的差值确定温度补偿值t
补偿

98.显示模块,用于显示增加温度补偿值t
补偿
后的温度值。
99.此外,所述体温检测装置还包括第二判断模块,所述第二判断模块用于判断人体是否处于发烧状态。
100.图2所示装置可以对应的执行上述方法实施例中的内容,本实施例未详细描述的部分,参照上述方法实施例中记载的内容,在此不再赘述。
101.参见图8,本公开实施例还提供了一种电子设备50,该电子设备包括:
102.至少一个处理器;以及,
103.与该至少一个处理器通信连接的存储器;其中,
104.该存储器存储有可被该至少一个处理器执行的指令,该指令被该至少一个处理器执行,以使该至少一个处理器能够执行前述方法实施例中的体温检测方法。
105.本公开实施例还提供了一种非暂态计算机可读存储介质,该非暂态计算机可读存储介质存储计算机指令,该计算机指令用于使该计算机执行前述方法实施例中的体温检测方法。
106.本公开实施例还提供了一种计算机程序产品,该计算机程序产品包括存储在非暂态计算机可读存储介质上的计算程序,该计算机程序包括程序指令,当该程序指令被计算机执行时,使该计算机执行前述方法实施例中的的体温检测方法。
107.下面参考图8,其示出了适于用来实现本公开实施例的电子设备50的结构示意图。本公开实施例中的电子设备可以包括但不限于诸如移动电话、笔记本电脑、数字广播接收器、pda(个人数字助理)、pad(平板电脑)、pmp(便携式多媒体播放器)、车载终端(例如车载导航终端)等等的移动终端以及诸如数字tv、台式计算机等等的固定终端。图8示出的电子设备仅仅是一个示例,不应对本公开实施例的功能和使用范围带来任何限制。
108.如图8所示,电子设备50可以包括处理装置(例如中央处理器、图形处理器等)501,其可以根据存储在只读存储器(rom)502中的程序或者从存储装置508加载到随机访问存储器(ram)503中的程序而执行各种适当的动作和处理。在ram 503中,还存储有电子设备50操
作所需的各种程序和数据。处理装置501、rom 502以及ram 503通过总线504彼此相连。输入/输出(i/o)接口505也连接至总线504。
109.通常,以下装置可以连接至i/o接口505:包括例如触摸屏、触摸板、键盘、鼠标、图像传感器、麦克风、加速度计、陀螺仪等的输入装置506;包括例如液晶显示器(lcd)、扬声器、振动器等的输出装置507;包括例如磁带、硬盘等的存储装置508;以及通信装置509。通信装置509可以允许电子设备50与其他设备进行无线或有线通信以交换数据。虽然图中示出了具有各种装置的电子设备50,但是应理解的是,并不要求实施或具备所有示出的装置。可以替代地实施或具备更多或更少的装置。
110.特别地,根据本公开的实施例,上文参考流程图描述的过程可以被实现为计算机软件程序。例如,本公开的实施例包括一种计算机程序产品,其包括承载在计算机可读介质上的计算机程序,该计算机程序包含用于执行流程图所示的方法的程序代码。在这样的实施例中,该计算机程序可以通过通信装置509从网络上被下载和安装,或者从存储装置508被安装,或者从rom 502被安装。在该计算机程序被处理装置501执行时,执行本公开实施例的方法中限定的上述功能。
111.需要说明的是,本公开上述的计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质或者是上述两者的任意组合。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子可以包括但不限于:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(ram)、只读存储器(rom)、可擦式可编程只读存储器(eprom或闪存)、光纤、便携式紧凑磁盘只读存储器(cd-rom)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本公开中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。而在本公开中,计算机可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读信号介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:电线、光缆、rf(射频)等等,或者上述的任意合适的组合。
112.上述计算机可读介质可以是上述电子设备中所包含的;也可以是单独存在,而未装配入该电子设备中。
113.上述计算机可读介质承载有一个或者多个程序,当上述一个或者多个程序被该电子设备执行时,使得该电子设备:获取至少两个网际协议地址;向节点评价设备发送包括所述至少两个网际协议地址的节点评价请求,其中,所述节点评价设备从所述至少两个网际协议地址中,选取网际协议地址并返回;接收所述节点评价设备返回的网际协议地址;其中,所获取的网际协议地址指示内容分发网络中的边缘节点。
114.或者,上述计算机可读介质承载有一个或者多个程序,当上述一个或者多个程序被该电子设备执行时,使得该电子设备:接收包括至少两个网际协议地址的节点评价请求;从所述至少两个网际协议地址中,选取网际协议地址;返回选取出的网际协议地址;其中,
接收到的网际协议地址指示内容分发网络中的边缘节点。
115.可以以一种或多种程序设计语言或其组合来编写用于执行本公开的操作的计算机程序代码,上述程序设计语言包括面向对象的程序设计语言—诸如java、smalltalk、c++,还包括常规的过程式程序设计语言—诸如“c”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(lan)或广域网(wan)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
116.附图中的流程图和框图,图示了按照本公开各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,该模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
117.描述于本公开实施例中所涉及到的单元可以通过软件的方式实现,也可以通过硬件的方式来实现。其中,单元的名称在某种情况下并不构成对该单元本身的限定,例如,第一获取单元还可以被描述为“获取至少两个网际协议地址的单元”。
118.应当理解,本公开的各部分可以用硬件、软件、固件或它们的组合来实现。
119.以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1