试剂盒及POCT血细胞分析仪的制作方法

文档序号:29836530发布日期:2022-04-27 12:39阅读:97来源:国知局
试剂盒及POCT血细胞分析仪的制作方法
试剂盒及poct血细胞分析仪
技术领域
1.本技术涉及医疗器械技术领域,特别涉及一种试剂盒及poct血细胞分析仪。


背景技术:

2.血球分析仪是常用的医用检测设备,是一类检测血液中血细胞(红细胞、白细胞、血小板)的数量及所占比例等参数的仪器,通过对血液的分析实现对被检样本微生物感染类别、贫血诊断和治疗、血液性疾病诊断等功能。随着技术的进步和科技的发展,血球分析仪的功能不断扩展、性能不断提高、自动化程度也不断提高,在临床上获得了广泛的应用。
3.然而,现有的poct血细胞分析仪中,试剂盒的后池电极,可能会使后池内产生剧烈的回流,对信号影响较大。


技术实现要素:

4.本技术提供一种试剂盒及poct血细胞分析仪,以解决现有技术中,试剂盒的后池电极,可能会使后池内产生剧烈的回流,对信号影响较大的技术问题。
5.为解决上述技术问题,本技术采用的一个技术方案是:提供一种试剂盒,该试剂盒包括电阻抗检测池,电阻抗检测池包括:微孔片、后池本体和后池电极,微孔片设有允许细胞逐一通过的微孔;后池本体位于微孔片的一侧,后池本体形成有与微孔连通的引流腔;后池电极嵌设于后池本体上,并伸向引流腔,其中,后池电极的内端面为凸面,后池电极的内端面为后池电极伸向引流腔的一侧端面。
6.进一步地,后池本体包括底壁和侧壁,底壁连接侧壁以形成引流腔,后池电极设置于底壁上,侧壁上设置有出液口,出液口与引流腔连通,底壁为平面,平面与侧壁倾斜设置,出液口设置于底壁与侧壁的相交处,且位于远离微孔片的一侧。
7.进一步地,后池本体包括底壁和侧壁,底壁连接侧壁以形成引流腔,后池电极设置于底壁上,从底壁设置有后池电极的位置到底壁的边缘的方向上,底壁到微孔片的距离逐渐减小。
8.进一步地,侧壁上设置有出液口,出液口与引流腔连通,出液口位于侧壁与底壁的相交处。
9.进一步地,底壁呈喇叭口状。
10.进一步地,后池电极的内端面为半球面。
11.进一步地,后池电极设置于底壁的中心位置,后池电极与引流腔同轴设置。
12.进一步地,后池电极的内端面与底壁之间的最大距离值小于0.5mm。
13.进一步地,后池电极的内端面与微孔片的距离不小于5mm。
14.为解决上述技术问题,本技术采用的另一个技术方案是:提供一种poct血细胞分析仪,该poct血细胞分析仪包括上述任一实施例的试剂盒及与试剂盒配合的检测座,poct血细胞分析仪用于血液样本的分析检测。
15.本技术的有益效果是:区别于现有技术的情况,本技术的试剂盒包括电阻抗检测
池,电阻抗检测池包括:微孔片、后池本体和后池电极,微孔片设有允许细胞逐一通过的微孔,后池本体位于微孔片的一侧,后池本体形成有与微孔连通的引流腔,以用于对样本进行电阻抗检测,后池电极嵌设于后池本体上并伸向引流腔,后池电极的内端面为凸面,通过此种方式,能够减弱细胞粒子反冲、回旋造成的信号扰动等影响,提高样本检测精度和检测结果准确性。
附图说明
16.为了更清楚地说明本技术实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本技术的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图,其中:
17.图1是本技术提供的试剂盒的一实施例的结构示意图;
18.图2是图1所示的试剂盒的分解示意图;
19.图3是图1所示的试剂盒的一视角的剖面结构示意图;
20.图4是图1所示的试剂盒中的后池本体的一实施例的结构示意图;
21.图5是图1所示的试剂盒中的后池本体的另一实施例的结构示意图;
22.图6是本技术提供的试剂盒的另一实施例的结构示意图;
23.图7是图6所示的试剂盒的分解示意图;
24.图8是本技术提供的试剂盒的另一实施例的结构示意图;
25.图9是图8所示的试剂盒的分解示意图;
26.图10是本技术提供的试剂盒的另一实施例的结构示意图;
27.图11是本技术提供的poct血细胞分析仪中移液器和吸管头的一实施例的结构示意图。
具体实施方式
28.下面将结合本技术实施例中的附图,对本技术实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本技术的一部分实施例,而不是全部的实施例。基于本技术中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本技术保护的范围。
29.需要说明,若本技术实施例中有涉及方向性指示(诸如上、下、左、右、前、后
……
),则该方向性指示仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
30.另外,若本技术实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本技术要求的保护范围之内。
31.第一实施例,本技术提供一种试剂盒,如图1-图3所示,图1是本技术提供的试剂盒
的一实施例的结构示意图,图2是图1所示的试剂盒的分解示意图;图3是图1所示的试剂盒的一视角的剖面结构示意图,该试剂盒包括:盒体10、密封圈20、微孔片30和后池本体40。
32.具体地,如图1和图2所示,盒体10包括前池101和与前池101连通的安装腔102。本实施例中前池101为电阻抗检测池,并设置有两组,分别用于配合进行wbc(white blood corpuscle,白细胞)检测和rbc(red blood cells,红细胞)检测。在其他实施例中,前池101也可以设置一组或者至少三组等,以用于红细胞、白细胞或者其他项目的检测,具体可以根据实际需要进行设置。
33.如图3所示,密封圈20设置于安装腔102内,且位于安装腔102靠近前池101的一侧,微孔片30设有允许细胞逐一通过的微孔31,微孔片30设置于密封圈20远离前池101的一侧,后池本体40位于微孔片30远离密封圈20的一侧,后池本体40用于将微孔片30和密封圈20固定于盒体10上。后池本体40与安装腔102卡扣配合、螺纹配合、过盈配合、激光焊接配合或者粘接配合。
34.本实施例中,密封圈20、微孔片30以及后池本体40依次设置于安装腔102内,且通过后池本体40将微孔片30与密封圈20压紧固定于盒体10上,此种方式,使安装腔102的内端密封良好,提高试剂盒的可靠性,且方便试剂盒的加工与装配。此处,安装腔102的内端指的是安装腔102靠近前池101的一端。
35.如图3所示,盒体10包括连通前池101和安装腔102的过孔103,密封圈20装设于过孔103处,并与安装腔102间隙配合,如此,密封圈20放入时,不会发生倾斜,方便密封圈20的安装,且前池101的液体不会从密封圈20的边缘进入到后池本体40内,提高试剂盒检测的可靠性。
36.进一步地,微孔片30的直径与过孔103的直径的比值不小于1.7,且微孔片30的直径不大于安装腔102的内径,比如,微孔片30的直径与过孔103的直径的比值为1.7、1.75或者1.8等,微孔片30的直径可以等于安装腔102的内径或者稍微小于安装腔102的内径。此种方式,能够便于后池本体40压紧微孔片30,避免液体从微孔片30的边缘进入后池本体40内,且方便微孔片30的安装,节省微孔片30的装配时间。
37.可选地,盒体10、密封圈20、微孔片30和后池本体40分别为独立件。在一个具体的实施例中,微孔片30和密封圈20粘接于盒体10上,后池本体40与盒体10粘接。在另一个具体的实施例中,微孔片30和密封圈20粘接于后池本体40上,后池本体40与盒体10粘接。如此,以降低装配难度。
38.在其他实施例中,密封圈20、微孔片30和后池本体40可为一体结构件以减少装配件的数量、降低装配难度、节约装配时间。
39.盒体10和/或后池本体40可以为塑胶体。微孔片30可以为塑胶片体或者陶瓷片体,塑胶片体或者陶瓷片体的材料成本相对便宜,可以作为一次性使用的产品,无需采用能够反复清洗使用的昂贵材料。密封圈20可以采用二次注塑工艺,采用相对柔软的塑胶材料注塑成型。
40.进一步地,如图2和图3所示,盒体10对应前池101设有前池电极60,后池本体40形成有引流腔41(也可称之为后池),前池101和引流腔41通过微孔31连通。后池本体40上设置有伸向引流腔41的后池电极50,前池电极60和后池电极50分别间隔位于微孔片30的两侧。前池电极60和后池电极50的外端(即二者相远离的两端)用于连接工作电压,前池电极60和
后池电极50的内端(即二者相靠近的两端)与待测样本液相接触,前池101中的待测样本液的液面高度会高于前池电极60,引流腔41中在检测时会充满待测样本液。
41.本技术实施例中,前池电极60的轴线和后池电极50的轴线大致在一条直线上,经实验验证,前池电极60的轴线和后池电极50同轴时检测的精度相对较高。在其他实施例中,前池电极60的轴线和后池电极50的轴线也可不在同一直线上。
42.在阻抗通道中,细胞的计算过程中,前池101的液体通过微孔片30,引流腔41(后池)慢慢充满液体。前池电极60和/或后池电极50可以为柱状电极。但是此种方式下,通过微孔片30的微孔31的液柱可能会撞击在后池电极50上,然后造成回流冲击微孔片30,此种现象,一方面影响信号的稳定性,另一方面可能会产生m波,降低检测的可靠性。
43.为了改善上述问题,在一些实施例中,后池电极50的内端面可以设置成凸面,比如,可以将后池电极50的内端设置成半球形,使后池电极50的内端面为曲面,如此,液体反冲流可以由正中间被均匀分散到四周,从而使反冲流也不会直接流向微孔片30,以减弱细胞粒子反冲的现象。其中,内端面是以前池101为参考时,后池电极50指向前池101的一端为内端面,背离前池101的一端为外端面。
44.进一步地,后池本体40上设置有出液口44,出液口44连通安装腔102,出液口44用于排出引流腔41内的气体或液体。
45.后池电极50的内端面与微孔片30的距离不小于5mm,比如,后池电极50的内端面与微孔片30的距离可以设置为5mm、6mm、7mm或者8mm等。通过限定微孔片30到后池电极50内端面的距离关系,避免微孔片30离后池电极50太近,以给予液体足够的缓冲距离,方便负压及时将引流腔41内的液体从出液口44导出。
46.进一步地,安装腔102的内端通过过孔103与前池101连通,安装腔102的外端为开口端,用于接收后池本体40的装入。安装腔102的端面可以设置定位部(图未示),后池本体40上可以设置配合部(图未示),配合部与定位部配合连接,以对后池本体40进行定位安装。
47.在一个具体的实施例中,安装腔102的外端面可以设置定位凸起,以作为定位部,后池本体40上可以设置与定位凸起相适配的定位凹槽,以作为配合部,在对后池本体40进行安装时,定位凸起与定位凹槽配合,以对后池本体40进行定位。如此,能够降低后池本体40的装配难度、节约装配时间。
48.在其他实施例中,安装腔102的外端面可以设置定位凹槽,以作为定位部,后池本体40上设置与定位凹槽相适配的定位凸起,以作为配合部,在对后池本体40进行安装时,定位凸起与定位凹槽配合,以对后池本体40进行定位安装。如此,也能够降低后池本体40的装配难度、节约装配时间。
49.综上,本实施例的试剂盒结构简单,微孔片30的固定方式新颖,便于加工,且装配难度低,具有较高的可靠性。
50.第二实施例,本技术还提供一种试剂盒,如图1-图5所示,图4是图1所示的试剂盒中的后池本体的一实施例的结构示意图,图5是图1所示的试剂盒中的后池本体的另一实施例的结构示意图,本实施例的试剂盒包括电阻抗检测池(图中未标示),用于对待检测样本进行电阻抗检测,电阻抗检测池包括后池本体40和后池电极50,后池电极50嵌设于后池本体40上,后池电极50与后池本体40可一体注塑成型或可拆卸连接。
51.后池本体40形成有引流腔41,后池电极50设置于后池本体40上并伸向引流腔41,
后池电极50的内端面为凸面,具体地,后池电极50的内端可以设置为半球形,后池电极50的内端面为后池电极50伸向引流腔41的一侧端面。关于后池电极50的凸面结构请参阅第一实施例的介绍,在此不再赘述。
52.进一步地,如图4所示,后池本体40包括底壁43和侧壁42,底壁43连接侧壁42以形成引流腔41,后池电极50设置于底壁43上。侧壁42上设置出液口44,出液口44与引流腔41连通,用于排出引流腔41内的气体或液体。在图4所示的实施例中,底壁43为平面,且底壁43所在的平面相对于侧壁42倾斜设置,出液口44设置于底壁43与侧壁42的相交处,且位于远离微孔片30的一侧。本实施例中,底壁43设置为向上倾斜的平面,并作为引流面,使液体通过微孔片30流向后池电极50之后再被底壁43引流导向至出液口44,方便液体从出液口44中流出,避免液体聚集,减少后池电极50附近因为粒子回旋造成信号扰动,提高检测的可靠性。
53.另外,出液口44位于侧壁42与底壁43的相交处,如此,底壁43形成的斜坡尽头紧贴着出液口44,当引流腔41内的液体经底壁43引流结束时就会径直流出出液口44,进一步减少液体的停留。
54.在另一个实施例中,如图5所示,本实施例中,底壁43也作为引流面对引流腔41内的液体进行引流。具体地,从底壁43设置有后池电极50的位置到底壁43的边缘的方向上,底壁43到微孔片30的距离逐渐减小。即,底壁43的形状可以为喇叭口状,以对引流腔41内的液体进行引流。
55.进一步地,如图5所示,出液口44设置于底壁43与侧壁42的相交处,即出液口44可以紧贴着底壁43设置,如此,当后池内的液体经底壁43引流结束时就会径直流出出液口44,减少液体的停留。
56.进一步地,后池电极50的内端面与底壁43的之间距离的最大距离值小于0.5mm。后池电极50的内端面凸出底壁43的内表面的距离较小,减少后池电极50卡液现象。
57.进一步地,后池电极50的内端面与微孔片30之间的距离不小于5mm,避免微孔片30离后池电极50太近,以给予液体足够的缓冲距离,方便负压及时将引流腔41内的液体从出液口44导出。
58.可选地,后池电极50设置于底壁43的中心位置,后池电极50与引流腔41同轴设置,通过此种方式,方便模具成型后的拔模操作。
59.上述实施例中,电阻抗检测池的结构新颖,后池电极50的内端面设置成凸面,并使后池本体40的底壁43形成引流面,将液体导向至出液口44,此种结构的改良,方便液体从出液孔流出,并且能够降低粒子反冲、回旋造成的信号扰动等影响,从而提高样本检测精度和检测结果准确性。
60.第三实施例,本技术还提供一种试剂盒,请参阅图6和图7所示,图6是本技术提供的试剂盒的另一实施例的结构示意图,图7是图6所示的试剂盒的分解示意图,该试剂盒包括盒体10,盒体10包括第一盒体11和第二盒体12,第一盒体11和第二盒体12可拆卸连接。
61.第一盒体11设置有第一检测池位,第一检测池位用于电阻抗检测,第二盒体12设置有第二检测池位,第二检测池位用于光学检测。本实施例中,第一检测池位可以用于wbc检测和rbc检测,第二检测池位可以用于特定蛋白的检测,在其他实施例中,第二检测池还可以配合用于其他生化检测、免疫检测等。
62.本实施例中,第一盒体11与第二盒体12可拆卸连接。如此,便于盒体10的存储及运
输。在其他实施例中,第一盒体11和第二盒体12也可以一体成型设置,以提高第一盒体11和第二盒体12连接的可靠性。
63.在图6和图7所示的实施例中,第一盒体11的一侧设置有至少一个卡槽111,第二盒体12的一侧设置有与卡槽111配合的凸块121。卡槽111与凸块121配合以将第二盒体12挂接于第一盒体11上。此种方式,第一盒体11和第二盒体12的连接结构简单,且装配和拆卸过程简单。优选地,卡槽111和凸块121的数量可以设置为多个,以使第二盒体12与第一盒体11的连接的更加牢固。
64.进一步地,卡槽111远离第一盒体11的一侧设置为缩口,即卡槽111远离第一盒体11的一侧开口的面积小于该卡槽111靠近第一盒体11一侧的底壁的面积。如此,能够有效防止第二盒体12从第一盒体11上脱落。
65.进一步地,卡槽111的沿第一平面的截面形状可以为梯形,其中,第一平面为垂直于第一盒体11的厚度方向的平面。此种方式,使得第一盒体11和第二盒体12的连接部位,形状规则,方便盒体10加工。
66.在另一个实施例中,如图8和图9所示,图8是本技术提供的试剂盒的另一实施例的结构示意图,图9是图8所示的试剂盒的分解示意图,具体地,第一盒体11的一侧设置有挂架112,第二盒体12的边缘悬挂于挂架112上。
67.具体地,如图9所示,挂架112围绕形成有悬挂孔1120,第二盒体12插装于悬挂孔1120内,第二盒体12的外端边缘支撑于挂架112上。此种方式,能够使第二盒体12的受力更加均匀,且能使第二盒体12更加稳定地固定于挂架112上。
68.进一步地,悬挂孔1120的截面的形状可以为矩形、圆形、梯形、三角形或者异形等。悬挂孔1120的形状可以与第二盒体12的形状相适配。比如,当第二盒体12为矩形时,悬挂孔1120的形状也设置为矩形。
69.在其他实施例中,第二盒体12的至少两端的边缘悬挂于挂架112上,以通过挂架112对第二盒体12进行支撑。此种方式,能够简化盒体10的结构,方便生产。比如,挂架112可以直接包括两个或者三个支撑杆,用于对第二盒体12的两端或者三端的边缘进行支撑,如此,也能够节约材料成本。
70.进一步地,如图7和图8所示,第一检测池位可以包括前池101,前池101可以设置两组,分别用于配合进行白细胞检测和红细胞检测。第一检测池位还可以包括至少一个吸管头放置池113、稀释液池114、溶血剂池115和样本容置池116,其中,吸管头放置池用于容置吸管头60,稀释液池114用于封装稀释液,溶血剂池115用于封装溶血剂;第一检测池位还可以包括样本稀释池117,样本稀释池117用于供样本稀释用。其中,多个池位呈直线排布,此种方式,可以在自动化检测时方便移液装置进行较短路径的运动,其中,移液装置用于将各池体中的液体进行转移并混合。
71.为了保证材质的透光率,第一盒体11可以采用透明pp(polypropylene,聚丙烯)材质。在其他实施例中,前池101也可以设有用于配合进行光学检测的透光检测窗(图未示),透光检测窗的透光度和光滑度可以与前池101相同或者高于前池101的其它部位。
72.进一步地,第二检测池位包括若干个放置孔123,放置孔123用于放置光学检测杯组件(图未示),以进行光学检测。其中放置孔123可以包括间隔设置的第一放置孔121和第二放置孔122。光学检测杯组件包括光学测量杯(图未示)和试剂杯(图未示),光学测量杯可
用于特定蛋白的检测,光学测量杯的材质可以为透明pc(polycarbonate,聚碳酸酯)材质,试剂杯用于存放试剂。第一放置孔121可以用于放置光学测量杯,第二放置孔122可以用于放置检测杯。
73.其中,第一放置孔121和第二放置孔122的形状不同,比如,第一放置孔121的形状可以设置为圆形,第二放置孔122的形状可以设置为矩形,以用于区分。
74.可选地,第二检测池位可以用于放置两组或者两组以上的光学检测杯组件,即第一放置孔121和第二放置孔122的数量可以均为两组或者两组以上,以用于不同项目的检测。
75.上述实施例的试剂盒的盒体10可拆卸连接,且装配和拆卸过程简单,方便运输。
76.第四实施例,本技术还提供一种试剂盒,请参阅图10所示,图10是本技术提供的试剂盒的另一实施例的结构示意图,本实施例的试剂盒包括盒体10和至少两个吸管头60。其中,盒体10上设置有至少两个吸管头放置池,以分别用于放置上述至少两个吸管头60。其中,吸管头60用于装配在移液器上以配合进行移液操作。
77.每个吸管头60都具有一定的容积,在移液操作时样本液或试剂液会留存在吸管头60内,本实施例中的至少两个吸管头60的容积不同。比如,试剂盒可以配置两个吸管头60,且该两个吸管头60的容积不同。在实际使用的过程中,不同的样本液或者试剂液可以使用不同容积的吸管头60,比如,当需要移液10μl,为保证移液精度可以选择10μl~20μl容量的吸管头60来进行移液。通过此种方式,能够提高加样精度,从而提高样本的检测结果的准确性。
78.进一步地,如图10所示,吸管头60包括管体61和固定部62,固定部62固定于管体61的外围,管体61形成有吸液口63,以用于吸液/吐液,固定部62位于管体61远离吸液口63的一侧,固定部62用于将管体61固定于吸管头放置池113中。其中,不同容积的吸管头60的固定部62的形状不同,以通过固定部62的形状对吸管头60进行区分,防止选错吸管头60。在其他实施例中,不同容积的吸管头60的固定部62的形状也可以相同,以方便吸管头60的生产。
79.盒体10上吸管头放置池113的内径可以相同也可以不同。比如,为了便于区分,至少两个吸管头放置池113的内径不同,以用于分别放置不同的吸管头60。具体地,可以将容积大的吸管头60插装于内径较大的吸管头放置池113中,将容积小的吸管头60插装于内径较小的吸管头放置池113中。
80.为了使吸管头60能够适应不同内径的吸管头放置池113,吸管头60的固定部62可以设置成台阶状。具体地,吸管头60的固定部62包括至少两个台阶,至少两个台阶朝远离吸液口63的一侧平行且间隔分布,而且,该至少两个台阶的外径朝远离吸液口63的方向逐渐增大。通过将固定部62设置成不同尺寸的台阶,使吸管头60能够适应不同内径的吸管头放置池113,此种方式,能够使吸管头60的插装不受吸管头放置池113的内径的限制,从而,方便吸管头60的取放。
81.吸管头60放置在吸管头的放置池113时,管体61插装于吸管头放置池113中,吸管头60可以通过固定部62支撑于盒体10的表面。
82.进一步地,吸管头放置池113的开口处可以设置有沉台1131,吸管头60放置在吸管头放置池113中时,固定部62可以支撑于沉台1131上,以通过沉台1131对吸管头60进行支撑。
83.可选地,容积不同的吸管头60的长度和/或口径也不同,以方便对不同的吸管头60进行区别。比如,容积较小的吸管头60的长度/口径也较小,以方便区分不同的吸管头60。
84.进一步地,吸管头60的内壁可以设置疏水涂层,以防止吸管头60挂液,提高吸管头60的加样精度。
85.进一步地,吸管头60上可以设有标识,标识为电子标签、二维码或者条码等,以记录吸管头60的相关参数。
86.上述实施例的试剂盒能够提高加样精度,从而提高样本检测结果的准确性。
87.第五实施例,本技术还提供一种poct(point-of-care testing,即时检验)血细胞分析仪,请参阅图11所示,本技术提供的poct血细胞分析仪中移液器和吸管头的一实施例的结构示意图,该poct血细胞分析仪包括移液器70,移液器70的端部用于与上述实施例的吸管头60配合以进行移液操作。
88.具体地,移液器70的端部设置有吸头71,吸头71用于套接吸管头60,吸管头60具有一定的容积,在移液操作时样本液或试剂液会留存在吸管头60内,而不会进入移液器70的内部,在完成吸液、移动、吐液操作,需要更换样本液或试剂液时,可以将已使用的吸管头60丢弃,重新安装未使用的吸管头60,从而可以对新的样本液或试剂液进行移液操作,因而不会对移液器70造成污染,因此无需在而每次使用后对移液器30进行清洗,省去了复杂的清洗组件和清洗流程,提高了检测效率。
89.进一步地,移液器70的端部的吸头71呈台阶状设置,以用于适应不同口径的吸管头60。通过此种方式,可以通过一个吸头71能够连接不同口径的吸管头60,以简化移液过程,节约材料成本。
90.本技术实施例还提供一种poct(point-of-care testing,即时检验)血细胞分析仪,其包括前述任一实施例的试剂盒及与试剂盒配合的检测座,该poct血细胞分析仪用于血液样本分析。关于试剂盒的具体结构请参阅前述实施例的附图及相关的文字说明,在此不再赘述。
91.以上仅为本技术的实施方式,并非因此限制本技术的专利范围,凡是利用本技术说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其它相关的技术领域,均同理包括在本技术的专利保护范围内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1