一种水中离子快速采集装置的制作方法

文档序号:29098565发布日期:2022-03-02 04:15阅读:134来源:国知局
一种水中离子快速采集装置的制作方法

1.本实用新型涉及梯度扩散薄膜技术领域,尤其涉及一种水中离子快速采集装置。


背景技术:

2.梯度扩散薄膜(diffusive gradients in thin-films,dgt)技术主要利用fick第一扩散定律,通过研究元素在dgt扩散层的梯度扩散及其缓冲动力学过程,获得元素在环境介质中的有效态含量与空间分布、离子态-络合态结合动力学以及固-液之间交换动力学的信息。dgt技术可以应用于环境中的许多方面研究,包括:沉积物的地球化学特征、水质的监测、待测离子在dgt与土壤界面的动力学过程和重金属的生物有效性等。
3.现有的dgt装置由固定层(即固定膜)和扩散层(扩散膜和滤膜)叠加组成,目标离子以自由扩散方式穿过扩散层,随即被固定膜捕获,并在扩散层形成线性梯度分布,整个吸附过程耗时久,采集效率低,难以在短时间完成水样采集。


技术实现要素:

4.鉴于上述的分析,本实用新型旨在提供一种水中离子快速采集装置,用以解决现有水下dgt装置的采样耗时久、效率低的问题。
5.本实用新型的目的主要是通过以下技术方案实现的:
6.一种水中离子快速采集装置,包括:
7.平行电场发生组件,被配置为产生稳定的平行电场;
8.dgt采样器,dgt采样器置于平行电场内。
9.进一步地,平行电场发生组件包括阳极、阴极和直流电源,阳极与阴极分别与直流电源的正极和负极连接。
10.进一步地,dgt采样器的轴线平行于平行电场的电场线布置。
11.进一步地,dgt采样器包括外壳,外壳内同轴依次设置有过滤膜、扩散层和吸附层。
12.进一步地,水中离子快速采集装置还包括框架,以备固定安装dgt采样器和平行电场发生组件。
13.进一步地,框架具有安装空间,dgt采样器和平行电场发生组件安装在安装空间内,安装空间与水体连通。
14.进一步地,dgt采样器通过固定套管与框架连接,固定套管的轴线平行于平行电场的电场线布置。
15.进一步地,平行电场发生组件通过电极连接件与框架连接。
16.进一步地,dgt采样器与固定套管拆卸连接。
17.进一步地,阳极与阴极均采用网状铂电极板。
18.与现有技术相比,本实用新型通过平行电场发生组件在dgt采样器的吸附环境中产生稳定的平行电场,以增加了水体中金属离子的迁移率,在相同时间内可以吸附更多的离子,加快实验进程,还能够模拟生物的某些主动吸附方式,具有广泛的应用前景。
19.本实用新型中,上述各技术方案之间还可以相互组合,以实现更多的优选组合方案。本实用新型的其他特征和优点将在随后的说明书中阐述,并且,部分优点可从说明书中变得显而易见,或者通过实施本实用新型而了解。本实用新型的目的和其他优点可通过说明书以及附图中所特别指出的内容中来实现和获得。
附图说明
20.附图仅用于示出具体实施例的目的,而并不认为是对本实用新型的限制,在整个附图中,相同的参考符号表示相同的部件。
21.图1为实施例中水中离子快速采集装置的结构示意图一;
22.图2为实施例中水中离子快速采集装置的结构示意图二;
23.图3为实施例中水中离子快速采集装置的结构示意图三;
24.图4为实施例中水中离子快速采集装置的立体图;
25.图5为实施例中水中离子快速采集装置的结构示意图四。
26.附图标记:
27.100、dgt采样器;1001、过滤膜;1002、扩散层;1003、吸附层;1004、外壳;200、阳极;300、阴极;400、直流电源;500、框架;5001、电极连接件;5002、固定套管。
具体实施方式
28.下面结合附图来具体描述本实用新型的优选实施例,其中,附图构成本技术一部分,并与本实用新型的实施例一起用于阐释本实用新型的原理,并非用于限定本实用新型的范围。
29.在本实用新型实施例的描述中,需要说明的是,除非另有明确的规定和限定,术语“相连”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接可以是机械连接,也可以是电连接可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本实用新型中的具体含义。
30.全文中描述使用的术语“顶部”、“底部”、“在
……
上方”、“下”和“在
……
上”是相对于装置的部件的相对位置,例如装置内部的顶部和底部衬底的相对位置。可以理解的是装置是多功能的,与它们在空间中的方位无关。
31.本实用新型的又一具体实施例,公开了一种水中离子快速采集装置,如图1至图5所示,包括:
32.平行电场发生组件,被配置为产生稳定的平行电场;
33.dgt采样器100,dgt采样器100置于平行电场内,以吸附水体中的离子。
34.与现有技术相比,本实施例提供的水中离子快速采集装置,结构简单,通过在传统dgt采样器外增设平行电场,使得dgt采样器置于一个稳定的平行电场环境中,增加了水体中金属离子的迁移率,在相同时间内可以吸附更多的离子,加快实验进程。
35.本实施例中,平行电场发生组件包括阳极200、阴极300及直流电源400,阳极200与阴极300平行设置,并分别与直流电源400的正极和负极连接。
36.进一步地,平行电场的电场线与dgt采样器100的轴线平行,以提升离子的吸附效率及吸附量。
37.本实施例中,dgt采样器100包括外壳1004,外壳1004内同轴依次设置有过滤膜1001、扩散层1002和吸附层1003。
38.本实施例中,平行电场内可以设置1个或多个dgt采样器。
39.如图3所示,平行电场内设置1个dgt采样器,则阳离子沿着电场方向从电场正极向负极迁移,叠加上浓度扩散梯度使得在吸附层吸附的阳离子的量比无电场情况下增加;而阴离子则会相对减少;中性分子不受电场影响,吸附的量与无电场情况下相同。
40.如图2至图5所示,平行电场内设置2个dgt采样器,两个dgt采样装置相对分别置于电场正负两极,则正极附近的dgt吸附层中,阴离子吸附量增加,阳离子吸附量下降;负极附近dgt吸附层中,阳离子吸附量增加,阴离子吸附量下降;对于中性分子,正负两极附近的dgt吸附层吸附量均不变。通过设置两个dgt采样器,可以区分阴阳离子,且通过不同化学形态的元素在电场中的迁移率差异,可以对其进行区分,是一种高效的化学形态分析手段。
41.具体而言,dgt采样器100的数量为两个,第一dgt采样器与第二dgt采样器同轴设置。两个采样器100优选采用如下两种布置方式:
42.第一种布置方式,第一dgt采样器的过滤膜1001与第二dgt采样器的过滤膜1001相对设置,第一dgt采样器的吸附层1003朝向阳极200,第二dgt采样器的吸附层1003朝向阴极300。第一dgt采样器吸附水体中的阴离子,第二dgt采样器吸附水体中的金属阳离子。
43.第二种布置方式,第一dgt采样器的吸附层1003与第二dgt采样器的吸附层1003相对设置,第一dgt采样器的过滤膜1001朝向阳极200,第二dgt采样器的过滤膜1001朝向阴极300。第一dgt采样器吸附水体中的金属阳离子,第二dgt采样器吸附水体中的阴离子。
44.本实施例的一个可选实施方式,水中离子快速采集装置还包括框架500,框架500具有安装空间,安装空间与水体连通,安装空间内安装dgt采样器100和平行电场发生组件。通过设置框架500以提升dgt采样器100和平行电场发生组件的安装稳定性,使得dgt采样器100的轴线与平行电场的电场线始终平行,从而保证二者具有相对稳定的位置关系,确保吸附效率。
45.进一步地,dgt采样器100通过固定套管5002与框架500连接,固定套管5002的轴线平行于平行电场的电场线布置;平行电场发生组件通过电极连接件5001与框架500连接。
46.为了便于更换拆卸dgt采样器100,dgt采样器与固定套管5002拆卸连接。示例性的,第一dgt采样器和第二dgt采样器螺纹连接于固定套管5002的两端。第一dgt采样器和第二dgt采样器的结构相同,dgt采样器的外壳1004设有外螺纹,固定套管5002设有内螺纹,外壳1004的外螺纹与固定套管5002的外螺纹相适配。采用螺纹连接方式,便于拆装,提升试验效率。
47.本实施例的一个可选实施方式,阳极200与阴极300均采用网状铂电极板,网状铂电极板的面积大于dgt采样器100的轴向面积,网状铂电极板的稳定性好,电场的稳定性更优。
48.利用本实施例的水中离子快速采集装置进行水样采集时,包括如下操作步骤:
49.将水中离子快速采集装置固定在水体中,利用平行电场发生组件在dgt采样器100所在区域产生平行电场,dgt采样器100的吸附层1003吸附水中金属元素。
50.以上所述,仅为本实用新型较佳的具体实施方式,但本实用新型的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本实用新型揭露的技术范围内,可轻易想到
的变化或替换,都应涵盖在本实用新型的保护范围之内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1