全光纤结构的自动准直后向CARS探测系统及方法与流程

文档序号:29049789发布日期:2022-02-25 23:36阅读:134来源:国知局
全光纤结构的自动准直后向CARS探测系统及方法与流程
全光纤结构的自动准直后向cars探测系统及方法
技术领域
1.本发明属于紧固设备技术领域,更具体地,涉及一种全光纤结构的自动准直后向cars探测系统及方法,用于实现免调光路、全光纤结构的紧凑型cars光谱仪/显微镜,在生物成像、温度场测量和物种探测等领域具有广泛的应用前景。


背景技术:

2.cars光谱技术是一种非线性激光光谱技术,利用分子的拉曼活性获取分子的特征光谱信号,广泛应用于化学、生物中分子探测或成像领域。由于其具有非侵入式探测、信号光谱峰位于泵浦光的短波方向(避免荧光干扰)、信号光方向性好便于收集且信号强度大等优点,相比荧光光谱、拉曼光谱具有独特的优势。然而,由于cars光谱技术是一种基于四波混频原理产生信号光的探测技术,其存在天然的非共振背景。而后向cars技术可以有效地减弱非共振背景对测量的影响,提高测量信噪比。本发明采用的即为后向cars探测技术。
3.随着光纤激光技术的飞速发展,其模块化程度高、小型轻量化程度高、长期稳定性高、维护方便等优点,相对其他类型激光器在工业领域应用地更为广泛。另一方面,目前的cars光谱技术采用两束或多数激光光源,其中一束激光作为泵浦光,另一束激光(一般由染料激光器或者opo产生)作为斯托克斯光,需要至少两台激光器或者至少一台激光器配合opo提供输入激光,还无法做到小型化。一台能同时产生泵浦光和斯托克斯光的激光光源将极大缩减cars光谱仪的尺寸,与此同时,本发明采用光纤中产生的后向受激拉曼散射(srs)和受激布里渊散射(sbs)自动满足合束条件,使用者无需调节光路,操作门槛大大降低。


技术实现要素:

4.针对现有技术的以上缺陷或改进需求,本发明提供一种cars探头及全光纤结构的自动准直后向cars探测系统,光纤中产生的sbs和srs分别作为cars探测装置的泵浦光和斯托克斯光,光束质量优于泵浦光,更有利于提高cars探测装置的空间分辨率;且光束自动满足共线条件,无需调节光路。另一方面,采用全光纤结构的探测装置可以适应多种测试场合,具有稳定性高、可维修性高、轻小型化潜力大等优势。与现有技术相比,本发明结构紧凑,稳定性高,操作门槛低,可维修性高等特点。
5.为了实现上述目的,按照本发明的一个方面,提供了一种全光纤结构的自动准直后向cars探测系统,包括:光源模块,其包括依次成光路连接的泵浦激光器、第一环形器和非线性光纤,所述泵浦激光器用于产生脉冲泵浦激光并与所述非线性光纤中的拉曼活性气体ch相互作用产生前向srs、后向srs、后向sbs和后向短波杂散光,所述后向sbs、后向srs分别作为cars探测系统的泵浦光和斯托克斯光;cars探头模块,其包括依次成光路连接的第二环形器和聚焦端帽,所述第一环形器与第二环形器光路连接,所述泵浦光和斯托克斯通过聚焦端帽聚焦样品上,在样品上发生cars过程,产生后向cars信号光;
以及探测模块,其包括探测器,所述探测器与第二环形器光路连接,所述cars信号光输到探测模块,进入探测器,形成闭合的全光纤结构的自动准直后向cars探测系统。
6.进一步地,所述光源模块包括设于所述第一环形器与非线性光纤之间的第一光纤布拉格光栅;设于非线性光纤之后的第一光束截止器。
7.进一步地,所述第一环形器包括第一环形器第一端口、第一环形器第二端口以及第一环形器第三端口。
8.进一步地,所述cars探头模块包括设于所述第二环形器后的第二光纤布拉格光栅。
9.进一步地,所述第一光纤布拉格光栅和第二光纤布拉格光栅的反射中心波长为λb为461.1~525.3nm,反射带宽为10~100nm,反射率rb为95%~99%。
10.进一步地,所述第二环形器包括:偏振分束器;覆盖泵浦光、斯托克斯光和cars信号光波段的宽波段的宽波段/波片;以及对应于cars信号光波长的1/4的窄线宽1/4波片。
11.进一步地,所述聚焦端帽包括消色差光纤准直器和消色差透镜。
12.按照本发明的另一个方面,提供一种全光纤结构的自动准直后向cars探测方法,包括如下步骤:s100:泵浦激光器产生脉冲泵浦激光与拉曼活性气体ch4相互作用产生前向srs、后向srs、后向sbs和后向短波杂散光,后向sbs、后向srs分别作为cars探测系统的泵浦光和斯托克斯光,且各自满足准直条件;s200:泵浦光和斯托克斯通过光纤传输到cars探头模块,通过聚焦端帽聚焦在ch4样品上,在样品上发生cars过程,产生后向cars信号光及其他杂散光;s300: cars探头模块产生的cars信号光通过光纤传输到探测模块,进入探测器,该探测器为光纤输入的光栅光谱仪,可以测定cars信号的波长。
13.进一步地,步骤s100还包括:s101:脉冲泵浦激光经第一环形器第一端口进入环形器,从第一环形器第二端口输出后经第一光纤布拉格光栅后进入非线性光纤;其中,所述非线性光纤采用空心光纤,并填充纯ch4气体;s102:前向srs和剩余泵浦光由第一光束截止器收集,后向sbs、后向srs和后向短波杂散光经过第一光纤布拉格光栅,后向短波杂散光被反射经非线性光纤后由第一光束截止器收集;s103:后向sbs和后向srs从第一环形器第二端口进入环形器后,从第一环形器第三端口输出。
14.进一步地,步骤s200还包括:s201:泵浦光和斯托克斯通过光纤传输到cars探头模块,从第二环形器第一端口进入第二环形器,再从第二环形器第二端口输出;s202:后向光反向通过聚焦端帽后,从第二环形器第二端口进入第二环形器,从第二环形器第三端口输出,进入第二光纤布拉格光栅,其他杂散光透过其进入第二光束截止
器,cars信号光被第二光纤布拉格光栅反射,从第二环形器第三端口进入第二环形器,再从第二环形器第四端口输出。
15.总体而言,通过本发明所构思的以上技术方案与现有技术相比,能够取得下列有益效果:1.本发明泵浦激光器产生脉冲泵浦激光与拉曼活性气体ch4相互作用产生后向sbs、后向srs分别作为cars探测系统的泵浦光和斯托克斯光,且各自满足准直条件,泵浦光和斯托克斯通过光纤传输到cars探头模块,通过聚焦端帽聚焦在ch4样品上,在样品上发生cars过程,产生后向cars信号光cars探头模块产生的cars信号光通过光纤传输到探测模块,进入探测器,可以测定cars信号的波长,实现全光纤结构的自动准直后向cars探测。
16.2.光纤中产生的sbs和srs分别作为cars探测装置的泵浦光和斯托克斯光,光束质量优于泵浦光,更有利于提高cars探测装置的空间分辨率;且光束自动满足共线条件,无需调节光路。
17.3.本发明的采用全光纤结构的探测装置可以适应多种测试场合,具有稳定性高、可维修性高、轻小型化潜力大等优势。与现有技术相比,本发明结构紧凑,稳定性高,操作门槛低,可维修性高等特点。
附图说明
18.图1为本发明实施例一种全光纤结构的自动准直后向cars探测系统结构图;图2为本发明实施例第一光纤布拉格光栅和第二光纤布拉格光栅工作原理图;图3为本发明实施例全光纤结构的自动准直后向cars探测方法流程图。
19.在所有附图中,同样的附图标记表示相同的技术特征,具体为:100-光源模块,1-泵浦激光器,2-第一环形器,2-1-第一环形器第一端口,2-2-第一环形器第二端口,2-3-第一环形器第三端口,3-第一光纤布拉格光栅,4-非线性光纤,5-第一光束截止器;200-cars探头模块,6-第二环形器,6-1-偏振分束器,6-2-宽波段1/4波片,6-3-窄线宽1/4波片,6-4-第二环形器第一端口,6-5-第二环形器第二端口,6-6-第二环形器第三端口,6-7-第二环形器第四端口,7-聚焦端帽,7-1-消色差光纤准直器,7-2-消色差透镜,8-第二光纤布拉格光栅,9-第二光束截止器;300-探测模块,10-探测器。
具体实施方式
20.为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
21.如图1所示,为一种全光纤结构的自动准直后向cars探测系统的一个实施例。一种cars探头及全光纤结构的自动准直后向cars探测系统,包括依次成光路连接的光源模块100、cars探头模块200和探测模块300。其中,光源模块100包括依次成光路连接的泵浦激光器1、第一环形器2、第一光纤布拉格光栅3、非线性光纤4和第一光束截止器5;cars探头模块200包括第二环形器6、聚焦端帽7、第二光纤布拉格光栅8和第二光束截止器9,其中,第一环形器2与第二环形器6光路连接,探测模块300包括探测器10,其与第二环形器6光路连接,从
而形成闭合的全光纤结构的自动准直后向cars探测系统。
22.其中,如图1所示,所述第一环形器2包括第一环形器第一端口2-1、第一环形器第二端口2-2以及第一环形器第三端口2-3。泵浦激光器1产生中心波长为532nm的脉冲泵浦激光经第一环形器第一端口2-1进入环形器2,从第一环形器第二端口2-2输出后经第一光纤布拉格光栅3后进入非线性光纤4,非线性光纤采用空心光纤,并填充纯ch4气体,泵浦激光与非线性光纤4中的拉曼活性气体ch4相互作用产生前向srs、后向srs、后向sbs和后向短波杂散光,其中前向srs和剩余泵浦光由第一光束截止器5收集,后向sbs、后向srs和后向短波杂散光经过第一光纤布拉格光栅3,该布拉格光栅的反射中心波长为λb为461.1~525.3nm(ch4拉曼频移:2891~2933cm-1
),反射带宽为10~100nm,反射率rb为95%~99%。
23.后向短波(中心波长:461.1nm)杂散光被反射经非线性光纤4后由第一光束截止器5收集;后向sbs(中心波长:532nm)和后向srs(中心波长:628.7nm)从第一环形器第二端口2-2进入环形器2后,从第一环形器第三端口2-3输出,分别作为cars探测系统的泵浦光和斯托克斯光,且自动满足准直条件。
24.光源模块100产生的泵浦光和斯托克斯通过光纤传输到cars探头模块200,从第二环形器第一端口6-4进入第二环形器6,再从第二环形器第二端口6-5输出,通过聚焦端帽7后,聚焦在ch4样品上,在样品上发生cars过程,产生中心波长为461.1nm后向cars信号光及其他杂散光;后向光反向通过聚焦端帽7后,从第二环形器第二端口6-5进入第二环形器6,从第二环形器第三端口6-6输出,进入第二光纤布拉格光栅8,其他杂散光透过其进入第二光束截止器9,cars信号光被第二光纤布拉格光栅8反射,该布拉格光栅的反射中心波长为λb为461.1~525.3nm(ch4拉曼频移:2891~2933cm-1
),反射带宽为10~100nm,反射率rb为95%~99%。从第二环形器第三端口6-6进入第二环形器6,再从第二环形器第四端口6-7输出。
25.cars探头模块200产生的cars信号光通过光纤传输到探测模块300,进入探测器10,该探测器为光纤输入的光栅光谱仪,可以测定cars信号的波长。
26.如图1所示,第二环形器6包括偏振分束器6-1、宽波段1/4波片6-2以及窄线宽1/4波片6-3。其中宽波段1/4波片6-2是覆盖泵浦光、斯托克斯光和cars信号光波段的宽波段适用1/4波片;窄线宽1/4波片6-3是对应于cars信号光波长的1/4波片。
27.如图1所示,聚焦端帽7包括消色差光纤准直器7-1和消色差透镜7-2,其作用波段需覆盖泵浦光、斯托克斯光和cars信号光;消色差光纤准直器7-1和消色差透镜7-2可通过机械组装或化学键合形成独立器件。
28.此外,第一光纤布拉格光栅3的反射波段设计为覆盖非线性光纤4中所产生后向短波杂散光的宽波段反射布拉格光栅。根据图2所示的原理,设光纤布拉格光栅的周期为、光纤的传播模式有效折射率为n
eff
,则反射波长λb可用下式表示:
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(1)有效折射率可用纤芯折射率n
core
和折射率增量δn表示为下式:
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(2)
反射波长λb处的反射率rb和反射带宽度δλb可由光栅长度l和折射率增加量δn表示:
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(3)
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(4)式中,是传播光能量中包含在纤芯中的传播光的比例。
29.综上,根据所需的反射中心波长λb,反射带宽,反射率rb可求得所需光纤布拉格光栅的周期、光栅长度l和折射率增加量δn。
30.第二光纤布拉格光栅8的反射波长为cars信号光对应的波长,反射带宽可根据被测物质的cars信号的光谱特性进行设计,具体计算公式见公式(1)~(4)。
31.如图3所示,在本发明另一个实施例中,提供全光纤结构的自动准直后向cars探测方法,包括如下步骤:s100: 泵浦激光器产生脉冲泵浦激光与拉曼活性气体ch4相互作用产生前向srs、后向srs、后向sbs和后向短波杂散光,后向sbs、后向srs分别作为cars探测系统的泵浦光和斯托克斯光,且各自满足准直条件;s200:泵浦光和斯托克斯通过光纤传输到cars探头模块,通过聚焦端帽聚焦在ch4样品上,在样品上发生cars过程,产生后向cars信号光及其他杂散光;s300: cars探头模块产生的cars信号光通过光纤传输到探测模块,进入探测器,该探测器为光纤输入的光栅光谱仪,可以测定cars信号的波长。
32.其中,步骤s100还包括:s101:脉冲泵浦激光经第一环形器第一端口进入环形器,从第一环形器第二端口输出后经第一光纤布拉格光栅后进入非线性光纤;其中,所述非线性光纤采用空心光纤,并填充纯ch4气体;s102:前向srs和剩余泵浦光由第一光束截止器收集,后向sbs、后向srs和后向短波杂散光经过第一光纤布拉格光栅,后向短波杂散光被反射经非线性光纤后由第一光束截止器收集;s103:后向sbs和后向srs从第一环形器第二端口进入环形器后,从第一环形器第三端口输出。
33.其中,s102中,所述布拉格光栅的反射中心波长为λb为461.1~525.3nm(ch4拉曼频移:2891~2933cm-1
),反射带宽为10~100nm,反射率rb为95%~99%。
34.其中,步骤s200还包括:s201:泵浦光和斯托克斯通过光纤传输到cars探头模块,从第二环形器第一端口进入第二环形器,再从第二环形器第二端口输出;s202:后向光反向通过聚焦端帽后,从第二环形器第二端口进入第二环形器,从第
二环形器第三端口输出,进入第二光纤布拉格光栅,其他杂散光透过其进入第二光束截止器,cars信号光被第二光纤布拉格光栅反射,从第二环形器第三端口进入第二环形器,再从第二环形器第四端口输出。
35.其中,第二光纤布拉格光栅的反射中心波长为为461.1~525.3nm,反射带宽为10~100nm,反射率rb为95%~99%。。
36.该实施例表明,本发明光纤中产生的sbs和srs分别作为cars探测装置的泵浦光和斯托克斯光,光束质量优于泵浦光,更有利于提高cars探测装置的空间分辨率;且光束自动满足共线条件,无需调节光路。另一方面,采用全光纤结构的探测装置可以适应多种测试场合,具有稳定性高、可维修性高、轻小型化潜力大等优势。与现有技术相比,本发明结构紧凑,稳定性高,操作门槛低,可维修性高等特点。
37.本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1