一种光纤微振动检波测量系统

文档序号:30299080发布日期:2022-06-04 21:01阅读:104来源:国知局
一种光纤微振动检波测量系统

1.本发明涉及微振动检测技术领域,尤其是涉及一种光纤微振动检波测量系统。


背景技术:

2.地震波作为一种十分重要的微振动波,一直是微振动研究的一大重点。地震学的研究起源于人类抵御地震灾的需要。早期的地震学主要从地质学的角度研究记载地震的宏观现象和地震的地理分布。 20世纪初由于地震波的记录和分析,使地震学从宏观描述向数理科学的方向发展,扩展了研究领域,出现了一些分支学科,并有了多方面的应用。
3.地震波检测是一种获取地表水文信息、了解重大地质灾害过程与机理、探明地下油气储层位置与储量等的关键手段。通过检测并分析地震波在地质中的传输演化规律,可以反演得到近地表地质结构状况与时移变化趋势,进而为地球物理相关研究提供重要的数据支撑。
4.在建筑振动检测领域,振动测试主要是对一定类型的振动信号所产生的振动响应进行监测,分析振动的特征及其对场地或振动源周边建筑物产生的影响。根据振动信号类型的不同,振动测试大致可以分为微振动测试、环境振动影响评价测试和工程(施工)振动影响评价测试。
5.微振动又称为常时微动或地脉动,主要是由气象变化、潮汐、海浪等自然力和交通运输、动力机器等人为扰力引起的波动,经地层多次反射和折射,由四面八方传播到测试点的多维波群随机组合而成,其振幅为小于几微米的微弱振动,具有平稳随机过程的特性。微振动测试在岩土工程勘察中主要提供场地的卓越周期,用于建筑工程的隔震设计。
6.环境振动影响评价测试主要针对精密厂房或设备装置,该类振动主要关注振动的强度,通常量级在nm~um级,由于该类振动能影响精密仪器、仪表的测量精度,也影响精密设备的加工精度。如果设备周边有振源,应测定其影响大小,当振动影响超过允许值时,必须对设计的精密仪器、仪表、设备等采取隔振或其他有效措施。
7.施工振动影响评价测试,主要针对施工过程中施工机械所产生的振动,对周边既有建筑、人群、设备等造成的影响,甚至可能产生的破坏进行评价,该类振动人类可以直接感触到,其强度通常在mm级。
8.在地震波探勘与振动测试领域,现有主流地震波检测手段为点式电学探测器,受限于其固有的技术瓶颈,阻碍了在相关领域的进一步发展。一方面,现有的手段通常需要野外长期单独供电与通讯,布设和维护难度大;另一方面,探测阵列对探测器组网的时钟同步精度提出了极高的要求;再者,受限于复用技术的能力,探测器的组网规模难以提升,不利于高精度广距离大范围的地震波探测;最后常规的地震传感器,例如动圈传感器(如申请号为cn201720386233.9的中国实用新型专利)、压电传感器和mems传感器由电子组件制成,容易受到电磁干扰,在精度、可靠性等方面都无法满足需求。开发新一代地震波与微振动探测技术,已经成为地球物理领域飞速发展所面临的一项重要任务。
9.综上所述,现有的微振动检测手段(包括建筑振动检测手段及地震波检测手段),
普遍存在易受到电磁干扰,在精度、可靠性等方面都无法满足需求的技术问题。


技术实现要素:

10.有鉴于此,有必要提供一种光纤微振动检波测量系统,用以解决现有的微振动检测手段易受到电磁干扰,在精度、可靠性等方面都无法满足需求的技术问题。
11.为了实现上述目的,本发明提供了一种光纤微振动检波测量系统,包括至少一振动传导机构、传感光纤及检测机构;所述振动传导机构包括基底、支撑柱、第一滑轮、第二滑轮及质量块,所述基底放置于测量环境地面上、并与地面形成受力耦合,所述支撑柱的下端固定于所述基底,所述第一滑轮安装于所述支撑柱的上端,所述第二滑轮位于所述第一滑轮的下方,所述质量块悬挂于所述第二滑轮上;所述传感光纤绕设于所述第一滑轮及所述第二滑轮上,所述传感光纤的一端与所述检测机构连接;所述检测机构用于向所述传感光纤内入射窄线宽激光脉冲,同时接收所述传感光纤内的背向散射光,并解调出所述背向散射光的相位变化。
12.在一些实施例中,所述振动传导机构还包括顶梁,所述顶梁固定于所述支撑柱的上端,所述第一滑轮安装于所述顶梁上。
13.在一些实施例中,所述第一滑轮转动设置于所述顶梁上。
14.在一些实施例中,所述第一滑轮的侧壁上开设有螺旋形的第一v型槽,所述传感光纤内置于所述第一v型槽内,所述传感光纤的外侧壁与所述第一v型槽贴合设置。
15.在一些实施例中,所述第一滑轮的半径大于20mm。
16.在一些实施例中,所述第二滑轮的侧壁上开设有螺旋形的第二v型槽,所述传感光纤内置于所述第二v型槽内,所述传感光纤的外侧壁与所述第二v型槽贴合设置。
17.在一些实施例中,所述第二滑轮的半径大于20mm。
18.在一些实施例中,所述振动传导机构还包括第一张紧轮,所述第一张紧轮转动设置于所述支撑柱上,所述第一张紧轮的侧壁与所述检测机构及所述第一滑轮之间的传感光纤贴合设置。
19.在一些实施例中,所述振动传导机构还包括第二张紧轮,所述第二张紧轮转动设置于所述支撑柱上,所述第二张紧轮的侧壁与相邻的两个所述振动传导机构的第一滑轮之间的传感光纤贴合设置。
20.在一些实施例中,所述检测机构包括窄线宽激光器及光纤相位解调终端,所述窄线宽激光器用于向所述传感光纤内入射窄线宽激光脉冲,所述光纤相位解调终端用于接收所述传感光纤内的背向散射光,并解调出所述背向散射光的相位变化。
21.与现有技术相比,本发明提出的技术方案的有益效果是:在使用时,当一微小震源激发微振动通过地面耦合至振动传导机构处,微振动会通过基底传递至第一滑轮,从而引起第一滑轮及第二滑轮的微振动,传感光纤通过来回缠绕于第一滑轮及第二滑轮之间,增大了传感光纤对应的传感长度,从而增大了该光纤微振动检波系统的灵敏度,所述第一滑轮及第二滑轮产生的微振动会引起所述传感光纤的应力变化,以使所述传感光纤中传输光与背向散射光的特性发生变化,所述检测机构用于计算所述传感光纤产生的背向散射光相
位变化,通过对不同质量块进行定标,即可得到该测试环境的微振动信息;基于相位解调的分布式光纤传感系统,使用传感光纤作为传感器来探测微振动信号,通过检测传感光纤中的背向散射光的相位变化检测传感光纤沿路各点的振动信息,传感光纤不仅用作信号传输介质,还可以用作传感器介质,相比于其他类型的微振动检测器,基于相位解调的分布式光纤传感系统具有结构简单,易于布设,性价比高,不易受到电磁干扰,能实现大范围、高精度测量等独特优势,可以很好地解决当前现在微振动探测方案中的瓶颈。
附图说明
22.图1是本发明提供的光纤微振动检波测量系统的一实施例(仅包含一个振动传导机构)的立体结构示意图;图2是本发明提供的光纤微振动检波测量系统的另一实施例(包含二个振动传导机构)的立体结构示意图;图3是本发明提供的光纤微振动测量系统在自然环境下得到的噪底示意图;图4是本发明提供的光纤微振动测量系统在大型建筑中所探测得到的时域振动信息示意图;图5是本发明提供的光纤微振动测量系统在大型建筑中所探测得到的频域信息示意图;图中:1-振动传导机构、11-基底、12-支撑柱、13-第一滑轮、131-第一v型槽、14-第二滑轮、141-第二v型槽、15-质量块、16-顶梁、17-第一张紧轮、18-第二张紧轮、2-传感光纤、3-检测机构。
具体实施方式
23.下面结合附图来具体描述本发明的优选实施例,其中,附图构成本技术一部分,并与本发明的实施例一起用于阐释本发明的原理,并非用于限定本发明的范围。
24.请参照图1,本发明提供了一种光纤微振动检波测量系统,包括至少一振动传导机构1、传感光纤2及检测机构3。
25.所述振动传导机构1包括基底11、支撑柱12、第一滑轮13、第二滑轮14及质量块15,所述基底11放置于探测环境地面上、并与地面形成受力耦合,所述支撑柱12的下端固定于所述基底11,支撑柱12亦可以与所述基底7一体成型,支撑柱12用于应变与应力的传递,所述第一滑轮13安装于所述支撑柱12的上端,所述第二滑轮14位于所述第一滑轮13的下方,所述质量块15悬挂于所述第二滑轮14上。需要说明的是,还可以使用其他数量的滑轮结构,滑轮结构的具体数量没有严格限定,可根据需求自行调控,并且滑轮结构应起到张紧传感光纤2并使各段传感光纤2受力一致的作用,以使多段传感光纤2同时受到微振动的作用。
26.所述传感光纤2绕设于所述第一滑轮13及所述第二滑轮14上,所述传感光纤2的一端与所述检测机构3连接。具体地,传感光纤2来回缠绕于第一滑轮13及所述第二滑轮14之间,并利用一质量块15施与传感光纤2一定的预应力,以使传感光纤2各段受力一致,确保其探测的一致性,并且使微振动信号可传递到所述传感光纤2上,使传感光纤2产生应变,进而使传感光纤2内的背向散射光(如瑞利背向散射光)的相位产生变化,从而用于实现对微振
动的测量,同时,传感光纤2由质量块15提供预应力使其处于张紧的状态,使传感光纤2与第一滑轮13及所述第二滑轮14之间不发生相对位移,保证传感光纤2布置时的初始预应力不变,使之能感受到外界微振动信号。所述传感光纤2采用微结构点高散射率光纤,微结构点高散射率光纤增大了背向散射光,以提高散射光强度,增大传感灵敏度,达到信噪比提升的目的,第一滑轮13及所述第二滑轮14之间可引入多个高散射率微结构点,测量时可获得多组不同高散射微结构点之间的微振动信号,后续处理可进行综合分析,提高信号的准确度与可信度。
27.所述检测机构3用于向所述传感光纤2内入射窄线宽激光脉冲,同时接收所述传感光纤2内的背向散射光,并解调出所述背向散射光的相位变化,以获取传感光纤2所受到的微振动相关特性参数,从而达到对微振动进行实时在线勘测的目的。
28.在使用时,当一微小震源激发微振动通过地面耦合至振动传导机构1处,微振动会通过基底11传递至第一滑轮13,从而引起第一滑轮13及第二滑轮14的微振动,传感光纤2通过来回缠绕于第一滑轮13及第二滑轮14之间,增大了传感光纤2对应的传感长度,从而增大了该光纤微振动检波系统的灵敏度,所述第一滑轮13及第二滑轮14产生的微振动会引起所述传感光纤2的应力变化,以使所述传感光纤2中传输光与背向散射光的特性发生变化,所述检测机构3用于计算所述传感光纤2产生的背向散射光相位变化,通过对不同质量块15进行定标,即可得到该测试环境的微振动信息。
29.由于光纤传感器具有动态范围大、灵敏度高、多路复用的可行性高、抗电磁干扰能力强的特点。基于相位解调的分布式光纤传感系统,使用传感光纤2作为传感器来探测微振动信号,通过检测传感光纤2中的背向散射光的相位变化检测传感光纤2沿路各点的振动信息,传感光纤2不仅用作信号传输介质,还可以用作传感器介质,本发明中还使用高散射微结构点光纤作为传感光纤2,以提高该系统的灵敏度。相比于其他类型的微振动检测器,基于相位解调的分布式光纤传感系统具有结构简单,易于布设,性价比高,不易受到电磁干扰,能实现大范围、高精度测量等独特优势,可以很好地解决当前现在微振动探测方案中的瓶颈。
30.本实施例中,所述传感光纤2采用微结构散射增强光纤,所制备的微结构散射增强光纤在光纤中引入一系列离散分布的微结构散射点,并将光纤划分为若干个独立区块。在所述微结构散射增强光纤中引入多个等间隔离散分布的散射增强点;当微结构散射增强光纤上任意一点有事件发生变化时,可以找到将发生事件包含在内的两个相邻的微结构散射点,通过计算两个微结构散射点的光相位差即可解调获得光纤区块上的事件。若第i和第j个微结构点间的光相位差可以表示为:其中,ne为光纤的有效折射率,d
ij
为两个微结构点间的距离,当对这段光纤施加微振动即作用力时,由于光纤的弹光效应,光纤的折射率和长度会发生变化,相位变化可以表示为:
进一步的可以得到相位与光纤上应变率

ɛ
变化之间的关系:其中,ke为光纤应变折射率系数可视作常数。因此两个强散点间相位差的改变与光纤应变率呈线性关系,通过求取相位,即可获得光纤上的应力分布。而每两个微结构点和两者中间的传感光纤即可视作一个传感单元,从而实现全光纤的分布式传感。在本发明中,采用多个滑轮结构的方式,实现传感光纤2的长度即d
ij
的增长,增大

φ
ij
,达到系统灵敏度提升的目的。
31.为了具体实现第一滑轮13的安装,请参照图1,在一优选的实施例中,所述振动传导机构1还包括顶梁16,所述顶梁16固定于所述支撑柱12的上端,所述第一滑轮13安装于所述顶梁16上。在另一个实施例中,所述支撑柱12亦可采用三角形的结构,而第一滑轮13可按照于交汇点,此种情况下,顶梁16不必设置。
32.进一步地,所述基底11、支撑柱12、第一滑轮13及第二滑轮14均采用能够与微振动进行良好受力耦合的材料,使微振动信号能更好地传感至传感光纤,得到高精度的测量结果。
33.为了便于将传感光纤2绕设于第一滑轮13及第二滑轮14上,请参照图1,在一优选的实施例中,所述第一滑轮13转动设置于所述顶梁16上,从而在安装时,可转动第一滑轮13,从而使传感光纤2绕设于第一滑轮13及第二滑轮14上,提高了安装效率。
34.为了防止传感光纤2与第一滑轮13之间产生相对的滑动而影响检测结果,请参照图1,在一优选的实施例中,所述第一滑轮13的侧壁上开设有螺旋形的第一v型槽131,所述传感光纤2内置于所述第一v型槽131内,所述传感光纤2的外侧壁与所述第一v型槽贴合131设置,所述第一v型槽131的槽径与所述传感光纤2的外径一致,以使所述第一v型槽131与所述传感光纤2之间的受力耦合,同时防止传感光纤2与所述第一滑轮13之间产生相对的滑动,从而可提高检测精度。
35.为了确保传感光纤2处于低损耗的传输状态,请参照图1,在一优选的实施例中,所述第一滑轮14的半径大于20mm,从而避免因曲率过大导致传感光纤2传输损耗加大。
36.为了防止传感光纤2与第二滑轮14之间产生相对的滑动而影响检测结果,请参照图1,在一优选的实施例中,所述第二滑轮14的侧壁上开设有螺旋形的第二v型槽141,所述传感光纤2内置于所述第二v型槽141内,所述传感光纤2的外侧壁与所述第二v型槽141贴合设置,以使所述第二v型槽141与传感光纤2之间的受力耦合,防止传感光纤2与所述第二滑轮14之间产生相对的滑动,从而可提高检测精度。
37.为了确保传感光纤2处于低损耗的传输状态,请参照图1,在一优选的实施例中,所述第二滑轮14的半径大于20mm,从而避免因曲率过大导致传感光纤2传输损耗加大。
38.为了防止所述检测机构3及所述第一滑轮13之间的传感光纤2发生松弛而影响检测结果,请参照图1,在一优选的实施例中,所述振动传导机构1还包括第一张紧轮17,所述第一张紧轮17转动设置于所述支撑柱12上,所述第一张紧轮17的侧壁与所述检测机构3及所述第一滑轮13之间的传感光纤2贴合设置,从而可使检测机构3及第一滑轮13之间的传感光纤2保持张紧状态。
39.为了实现多分量分布式的微振动测量,请参照图1和图2,将多个所述振动传导机
构1通过所述传感光纤2进行串联,从而仅用一根传感光纤2即可实现多分量分布式的微振动测量,亦可以通过对各个传感单元探测到的震动信号对震源进行定位。
40.为了防止相邻的两个所述振动传导机构1的第一滑轮13之间的传感光纤2发生松弛而影响检测结果,请参照图1和图2,在一优选的实施例中,所述振动传导机构1还包括第二张紧轮18,所述第二张紧轮18转动设置于所述支撑柱12上,所述第二张紧轮18的侧壁与相邻的两个所述振动传导机构1的第一滑轮13之间的传感光纤2贴合设置,从而可使相邻的两个所述振动传导机构1的第一滑轮13之间的传感光纤2保持张紧状态。
41.为了具体实现检测机构3的功能,请参照图1,在一优选的实施例中,所述检测机构3包括窄线宽激光器及光纤相位解调终端,所述窄线宽激光器用于向所述传感光纤2内入射窄线宽激光脉冲,所述光纤相位解调终端用于接收所述传感光纤2内的背向散射光,并解调出所述背向散射光的相位变化,以获取传感光纤2所受到的微振动相关特性参数,从而达到对微振动进行实时在线勘测的目的。所述光纤相位解调终端采用相干探测的方案,接收到的光信号的强度取决于本振光强与信号光强,较强的本振光能够显著提升探测器端光信号的强度。因此基于相干探测的微结构散射增强光纤传感系统在传感光纤和接收端都能够实现光信噪比的增强,使探测足以达到地应变领域所需达到的水平。
42.需要指出的是,所述质量块15用于保证所述滑轮组结构的自然垂吊状态,其质量会影响所述光纤微振动测量系统的灵敏度,具有不同质量的质量块15在传感光纤2中产生的预应力大小不同,会导致检测灵敏度不同,通过对具有不同质量的质量块15对应的灵敏度进行定标,可以得到不同质量块下对应光纤微振动检波系统的灵敏度,以便可以选择出最合适质量的质量块15。因此,所述光纤微振动测量系统需要对不同质量的质量块15进行灵敏度定标。
43.在本实施例中,所述基底11、支撑柱12、第一滑轮13及第二滑轮14均需要采用对温度膨胀系数小的材料。需要注意的是,该光纤微振动测量系统需要安装于相对稳定安静的环境中,以减小外界环境(温度对流、动物活动等)对传感光纤2造成的干扰。当微振动传递到支撑柱12上时,经过第一滑轮13及第二滑轮14会对传感光纤2产生作用力。因此,可以通过解调传感光纤2的相位变化,获得传感光纤2所受到的应变值,通过光纤相位解调系统的连续解调,即可完成对微振动的实时监控。
44.本发明的实施例中,所述光纤相位解调系统是基于通过窄线宽激光器将光源注入传感光纤2,通过接收光源产生的背向散射光,并对接收到的背向散射光进行高精度的相位解调,以获得光路的相位信息,由于相位变化与应变是一一对应的关系,进而得到光纤所受到的应变信息。其基本原理是,传感光纤2受到微振动作用,采用解调传感光纤2相位变化量可以得到传感光纤2由应变所带来的相位变化。这里为了提高所产生的背向散射光强度,传感光纤2采用微结构点高散射率光纤,一方面可以增加背向散射光强度,提高信噪比,另一方面也可以抑制相干衰落现象,保证信号的可信度。
45.请参阅图3-图5,图3-图5为本发明提供的光纤微振动测量系统的实验测试结果示意图。
46.如图3所示,图3为本发明提供的光纤微振动测量系统在自然环境下得到的噪底示意图。
47.如图3所示,该光纤微振动测量系统在自然环境下得到的噪底在低频段信号基本
都维持在100mrad/√hz底噪以下,根据灵敏度进行理论推算,该光纤微振动测量系统可测得的最小应变值应该在10-9
ɛ
水平,满足微振动最小应变测量需求。
48.如图4和图5所示,图4和图5为本发明提供的光纤微振动测量系统在大型建筑中所探测得到的振动信息。
49.如图4所示,为本发明提供的光纤微振动测量系统在大型建筑中所探测到的时域振动信息,可以明显观察到特定规律的楼房自振。图5为该振动的频域信息示意图,可以明显观察到三个特征频点,证明了本发明的可行性。
50.综上所述,本发明提供的技术方案的有益效果如下:(1)本发明提出的光纤微振动检波测量系统通过将该系统放置于测试环境地面上,通过振动传导机构1将微振动信息传感于传感光纤2上,传感光纤2受到微振动信号影响产生相位变化,将相位变化进行解调即可获得微振动信息,实现了微振动的高精度测量,整个系统结构简单,易于布设;(2)本发明提出的光纤微振动检波测量系统中传感光纤2采用微结构散射增强光纤作为敏感单元,结合一定的增敏安装方式,通过相位解调系统,实现高精度微振动探测;(3)本发明提出的光纤微振动检波测量系统中通过在传感光纤2的滑轮组间之间可引入多个高散射率微结构点,测量时可获得多组不同高散射微结构点之间的微振动信号,后续处理进行综合分析,可以提高信号的准确度与可信度;(4)本发明提出的光纤微振动检波测量系统中,将多个振动传导机构1进行串联,利用一根传感光纤2与同一数据处理系统即可实现多分量的分布式微振动探测,解决了现有测微振动系统组网复用困难,难以实现分布式探测等问题;(5)本发明提出的光纤微振动检波测量系统将传感光纤来回缠绕的方式布设于相邻振动传导机构1的滑轮结构之上,使传感光纤2长度增加,提高了传感光纤2的灵敏度;同时通过在滑轮结构上刻制v型槽保证了传感光纤每段受力一致,保证了测量结果的高精确度;(6)本发明提出的光纤微振动检波测量系统通过改变质量块15的质量大小可以改变传感光纤2的预应力,可以对传感光纤2的响应灵敏度进行进一步调节,起到定标的作用。进行多次标定,可以选择出最合适的质量块。
51.以上所述仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1