一种基于神经网络的降雨量自动估测方法及系统

文档序号:31365679发布日期:2022-08-31 15:39阅读:140来源:国知局
一种基于神经网络的降雨量自动估测方法及系统

1.本发明属于气象定量估测降雨技术领域,具体地,涉及一种基于神经网络的降雨量自动估测方法及系统。


背景技术:

2.降雨是气象中最频发的一种天气状况,不仅影响人们的日常劳作及出行,对工业、农业、商业、交通行业等也有着重要影响,过多的降雨会影响人们的正常生活甚至造成自然灾害。因此,做好强降水预警工作,为人们的生活及时提供准确的降雨量信息,成为气象研究者及广大科研人员的研究重点和难点。
3.目前,对于降雨的估测,是通过雷达反射率与降雨之间存在的经验公式z-r关系获得降雨信息。即雷达反射率因子z单位:mm6/m3和降雨量r单位:mm/h之间,
4.在一些合理的假设下,推导出来的z-r关系,假设如下:
5.1、雨量均匀分布且不根据时间改变;
6.2、垂直于近地面的气流可不计;
7.3、雨滴散射满足瑞利散射
8.4、雨滴的落下速度假设在静态大气中。
9.此类传统方法是在很多假设下进行的推导,没有考虑空气流动,雨滴分布,气压,风速,温湿度等影响降雨的因素,因此此方法对于降雨量估测存在很大误差,该经验公式较为粗糙,无法根据实际环境准确的估测出降雨量信息。


技术实现要素:

10.本发明提出了一种基于神经网络的降雨量自动估测方法及系统,该方法不仅整体提高了对降雨量估测的准确率,同时提高了对中雨、大雨、暴雨的估测准确率。
11.本发明通过以下技术方案实现:
12.一种基于神经网络的降雨量自动估测方法:
13.所述方法具体包括以下步骤:
14.步骤s101、提取雷达反射率与地面降雨观测站点的时空对应数据;
15.步骤s102、利用神经网络算法对步骤s101所提取的数据进行训练,更新神经网络节点的权重,估测降雨量;
16.步骤s103、使用加权的损失函数优化步骤s102所述的神经网络算法,提高模型对中雨、大雨、暴雨的估测能力;
17.步骤s104、通过各网络节点的权重计算,输出估测的降雨量。
18.进一步地,在步骤s101中,
19.从雷达回波数据提取雷达反射率;
20.从地面观测站点提取风向、风速、湿度、露点、温度、气压和站点高度参数数据。
21.进一步地,在步骤s102中,
22.用神经网络算法对输入的雷达反射率、风速、湿度、露点、温度、气压和站点高度数据进行训练,输出为估测降雨量;
23.通过神经网络训练确定网络各个节点的权重,得到各参数对降雨量的影响,从而得到降雨量估测值。
24.进一步地,在步骤s103中,
25.使用加权损失函数对神经网络算法进行优化,使神经网络算法在训练过程中加大对中雨、大雨、暴雨的关注;
26.及通过加大神经网络算法损失,使得各网络节点在参数更新时更在意中雨、大雨、暴雨的损失值,提高模型对中雨、大雨、暴雨的估测能力。
27.进一步地,
28.所述的加权损失函数的计算公式为:
[0029][0030]
其中yi为实际降雨量,为估测降雨量,w(y)i为权重通过对其误差进行加权,增大中雨、大雨、暴雨误差在反向传播过程中的影响,进而提高对中雨,大雨,暴雨的估测准确率。
[0031]
一种基于神经网络的降雨量自动估测装置:
[0032]
所述装置包括数据提取模块301、神经网络模块302和计算输出模块303;
[0033]
数据提取模块301,用于提取雷达反射率与地面降雨观测站点的时空对应数据;
[0034]
神经网络模块302,用于使用数据提取模块所提取的数据训练神经网络,更新神经网络节点的权重,估测降雨量;并通过加权损失函数,优化神经网络模块,提高模型对中雨、大雨、暴雨的估测能力;
[0035]
计算输出模块303、用于各网络节点的权重计算,输出估测的降雨量。
[0036]
进一步地,
[0037]
所述数据提取模块301还用于:
[0038]
从雷达回波数据提取雷达反射率;
[0039]
从地面观测站点提取风向、风速、湿度、露点、温度、气压和站点高度参数数据。
[0040]
进一步地,
[0041]
所述神经网络模块302还用于:
[0042]
对输入的雷达反射率、风速、湿度、露点、温度、气压和站点高度数据进行训练,输出为估测降雨量;
[0043]
训练确定网络各个节点的权重,得到各参数对降雨量的影响,从而得到降雨量估测值。
[0044]
进一步地,
[0045]
所述神经网络模块302还用于:
[0046]
对神经网络进行优化,使神经网络模块在训练过程中加大对中雨、大雨、暴雨的关注;
[0047]
及通过加大神经网络模块302的损失,使得各网络节点在参数更新时更在意中雨、
大雨、暴雨的损失值,提高模块对中雨、大雨、暴雨的估测能力。
[0048]
进一步地,
[0049]
神经网络模块302中的加权损失函数计算公式为:
[0050][0051]
其中yi为实际降雨量,为估测降雨量,w(y)i为权重,通过设置权重对其误差进行加权,增大中雨、大雨、暴雨误差在反向传播过程中的影响,进而提高对中雨,大雨,暴雨的估测准确率。
[0052]
一种电子设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现上述任一项所述方法的步骤。
[0053]
一种计算机可读存储介质,用于存储计算机指令,所述计算机指令被处理器执行时实现上述任一项所述方法的步骤。
[0054]
本发明有益效果
[0055]
本发明解决了现有技术在多种假设下得到的经验公式无法准确估测出实际降雨量,且未考虑影响降雨的温度、湿度、风速、气压等信息,导致降雨量的估计准确率低,同时对中雨、大雨、暴雨的估测准确率过低的技术问题。
附图说明
[0056]
图1为本发明一个实施例的基于神经网络的降雨量自动估测方法流程图;
[0057]
图2为本发明一个实施例的基于神经网络的降雨量自动估测方法原理示意图;
[0058]
图3为本发明一个实施例的基于神经网络的降雨量自动估测系统结构示意图。
具体实施方式
[0059]
下面将结合本发明实施例中的附图对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
[0060]
对于降雨的估测,是通过雷达反射率与降雨之间存在的经验公式z-r关系获得降雨信息。即雷达反射率因子z单位:mm6/m3和降雨量r单位:mm/h之间满足如下公式:
[0061]
z=arb[0062]
其中a,b为经验常数,a约200,b在1.5~2之间,根据不同时次、不同地区、不同雷达产品等多种因素确定。其中雷达反射率为dbz,需要通过下面公式转换成雷达反射率因子z。
[0063]
dbz=10lg(z)
[0064]
z-r经验公式的推导过程如下所述。
[0065]
雷达反射率因子z定义如下:
[0066][0067]
其中,n表示雨水颗粒密度,d表示水滴直径,而n(d)dd表示单位体积中直径在d,d+
dd之间的颗粒数。
[0068]
忽略地面气流垂直变化的情况,降雨量r可以表示为:
[0069][0070]
其中n(d)和ν(d)分别为颗粒下降的密度和末速度。
[0071]
由上式可知,反射率因子和降雨量r都和雨滴谱n(d)dd相关,且r还与粒子质量和下落末速度有关,雨滴谱可由下面公式得到:
[0072]
n(d)d(d)=c1due-^d
dd
[0073]
其中,c1、u、∧为常数,通常根据实际资料确定取值。
[0074]
雨滴在静态大气中的落下速度可以由下式计算得出:
[0075]
v(d)=c
1-c2e-6d
[0076]
其中,v(d)单位是cm/s,c1、c2是常数。
[0077]
结合图1至图3,本发明提出了一种基于神经网络的降雨量自动估测方法及系统。
[0078]
一种基于神经网络的降雨量自动估测方法:
[0079]
所述方法具体包括以下步骤:
[0080]
步骤s101、提取雷达反射率与地面降雨观测站点的时空对应数据;
[0081]
步骤s102、利用神经网络算法对步骤s101所提取的数据进行训练,更新神经网络节点的权重,估测降雨量;
[0082]
步骤s103、使用加权的损失函数优化步骤s102所述的神经网络算法,提高模型对中雨、大雨、暴雨的估测能力;
[0083]
步骤s104、通过各网络节点的权重计算,输出估测的降雨量。
[0084]
在步骤s101中,
[0085]
通过算法自动进行数据提取工作:
[0086]
主要从雷达回波数据提取雷达反射率相关数据;
[0087]
从地面观测站点提取风向、风速、湿度、露点、温度、气压和站点高度等20个降雨相关参数数据。
[0088]
在步骤s102中,
[0089]
用神经网络算法对输入的雷达反射率、风速、湿度、露点、温度、气压和站点高度数据进行训练,输出为估测降雨量;使其学习到输入与降雨量之间的相关性,
[0090]
通过神经网络训练确定网络各个节点的权重,得到各参数对降雨量的影响,从而得到降雨量估测值。
[0091]
在步骤s103中,
[0092]
使用加权损失函数对神经网络算法进行优化,使神经网络算法在训练过程中加大对中雨、大雨、暴雨的关注;
[0093]
及通过加大神经网络算法损失,使得各网络节点在参数更新时更在意中雨、大雨、暴雨的损失值,提高模型对中雨、大雨、暴雨的估测能力。
[0094]
所述的加权损失函数的计算公式为:
[0095]
[0096]
其中yi为实际降雨量,为估测降雨量,w(y)i为权重通过对其误差进行加权,增大中雨、大雨、暴雨误差在反向传播过程中的影响,进而提高对中雨,大雨,暴雨的估测准确率。
[0097]
一种基于神经网络的降雨量自动估测装置:
[0098]
所述装置包括数据提取模块301、神经网络模块302和计算输出模块303;
[0099]
数据提取模块301,用于提取雷达反射率与地面降雨观测站点的时空对应数据;
[0100]
神经网络模块302,用于使用数据提取模块所提取的数据训练神经网络,更新神经网络节点的权重,估测降雨量;并通过加权损失函数,优化神经网络模块,提高模型对中雨、大雨、暴雨的估测能力;
[0101]
计算输出模块303、用于各网络节点的权重计算,输出估测的降雨量。
[0102]
所述数据提取模块301还用于:
[0103]
通过算法自动进行数据提取工作:
[0104]
主要从雷达回波数据提取雷达反射率相关数据;
[0105]
从地面观测站点提取风向、风速、湿度、露点、温度、气压和站点高度等20个降雨相关参数数据。
[0106]
雷达回波是由雷达站点旋转扫射得到的一片空中区域的反射率数据,每6分钟更新一次,地面观测站点为地面某处用于检测此处风向、风速、湿度、露点、温度、气压、降雨量等数据的设备,每6分钟更新一次,因此需要通过地面观测站点经纬度和雷达回波各点经纬度,以及对应时间,提取时空对应的雷达反射率数据。从而得到用于估测当前时刻降雨量的参数数据。
[0107]
所述神经网络模块302还用于:
[0108]
对输入的雷达反射率、风速、湿度、露点、温度、气压和站点高度数据等20个相关参数数据进行训练,输出为估测降雨量;
[0109]
训练确定网络各个节点的权重,得到各参数对降雨量的影响,从而得到降雨量估测值。
[0110]
所述神经网络模块302还用于:
[0111]
对神经网络进行优化,使神经网络模块在训练过程中加大对中雨、大雨、暴雨的关注;
[0112]
及通过加大神经网络模块302的损失,使得各网络节点在参数更新时更在意中雨、大雨、暴雨的损失值,提高模块对中雨、大雨、暴雨的估测能力。
[0113]
神经网络模块302中的加权损失函数计算公式为:
[0114][0115]
其中yi为实际降雨量,为估测降雨量,w(y)i为权重,通过设置权重对其误差进行加权,增大中雨、大雨、暴雨误差在反向传播过程中的影响,进而提高对中雨,大雨,暴雨的估测准确率。
[0116]
一种电子设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现上述任一项所述方法的步骤。
[0117]
一种计算机可读存储介质,用于存储计算机指令,所述计算机指令被处理器执行时实现上述任一项所述方法的步骤。
[0118]
以上对本发明所提出的一种基于神经网络的降雨量自动估测方法及系统,进行了详细介绍,对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1