一种基于H

文档序号:31212485发布日期:2022-08-20 03:50阅读:97来源:国知局
一种基于H
一种基于h
13c14
n气体池的调频连续波同时测距和测速方法及系统
技术领域
1.本发明涉及调频连续波多参数测量技术领域,特别涉及一种基于h
13c14
n气体池的调频连续波同时测距和测速方法及系统。


背景技术:

2.同时实现高精度测速和测距技术在科学研究和工程制造方面具有重要意义,在设备可靠性检测、航空航天、精密仪器制造等领域具有广阔的应用场景。由于其激光波长和注入电流之间的非线性关系以及电流影响增益介质的温度导致的波长波动,fmcw激光器存在非线性,导致无法通过快速傅里叶变换(fft)准确得出拍频的频率,难以满足多参数精密测量的要求。因此,如何消除fmcw激光器的非线性并实现多参数的测量是调频连续波测量技术需要解决的关键为题之一。fmcw激光雷达具有超大的时带积,距离分辨率较高,fmcw激光雷达通过计算本波和回波干涉产生的信号计算待测目标的信息。然而,目前的调频连续波激光雷达通过提取拍频信号的频率来计算待测目标的距离,随着待测目标的移动速度的增加,频谱信号的展宽现象更加严重,并且fft运算需要耗费大量的时间,因此迫切需要一种更为便捷快速、光路简单、成本较低的调频连续波多参数测量算法,提高系统的稳定性和实用性。


技术实现要素:

3.本发明解决的技术问题是:本发明的目的是克服现有方法的不足,提出了一种基于h
13c14
n气体池的调频连续波同时测距和测速方法及系统,该方法便捷高效、鲁棒性强,有利于实现调频连续波测量系统精准、便捷的距离和速度测量。
4.本发明的目的是通过以下技术方案来实现的:一种基于h
13c14
n气体池的调频连续波同时测距和测速系统,包括调频连续波激光器 fmcw、掺铒功率放大器 edfa、光隔离器、光分束器、光耦合器、环形器 cir、准直镜 cm、光学混频器 oh、平衡探测器、被测物体、hcn气体池和法布里波罗腔 f-p;所述调频连续波激光器 fmcw与掺铒功率放大器edfa和光隔离器直接连接。
5.具体的,所述调频连续波激光器 fmcw激光雷达型号为luna phoenix 1400,调频范围设置为1540-1560 nm,调频速率设置为100.01nm/s,谱线宽度为1.5mhz。
6.具体的,所述法布里波罗腔 f-p的型号为sa-200-12b,反射经的曲率半径为100mm,自由光谱范围为1.498ghz。
7.一种基于h
13c14
n气体池的调频连续波同时测距和测速方法,根据权利要求1~3任意一项所述的基于h
13c14
n气体池的调频连续波同时测距和测速系统实现,所述同时测距和测速方法通过提取对应于h
13c14
n气体池吸收峰的调频频率以及测量路拍频信号的相位信息拟合出包含被测物体距离和速度信息的曲线,以实现调频连续波同时测量动态物体的距离和速度。
8.具体的,包括:步骤一,使用fmcw作为光源,调制方式为三角波调制;搭建基于马赫曾德尔的测量光路部分;步骤二,通过光分束器将一部分fmcw光源分别接入到hcn标准气体池光路和f-p腔非线性校正光路;其中,标准气体池将吸收特定的调频频率的能量,形成吸收峰;使用标准气体池的吸收峰特性确定特定的调频频率,使用f-p腔拟合fmcw光源的调频时域图,消除非线性;步骤三,对步骤一中采集到的测量路拍频信号进行希尔伯特变换,提取拍频信号的相位与时间的关系;根据步骤二中的吸收频率,拟合出吸收频率与其对应的相位的曲线;步骤四,根据步骤二中的fmcw的光源调频时域图拟合出上升扫频和下降扫频的速率将上升扫频和下降扫频对应的离散点与测量得到的调频速率相乘,然后将双向扫频的离散点进行差分,最后将差分后的离散点进行一次项拟合;从而得到待测目标的距离和速度。
9.具体的,所述三角波调制具体为调频范围设置为1540nm到1560nm,调频速率设置为100.04nm/s。
10.具体的,所述测量光路部分的上升扫频和下降扫频对应的拍频信号的相位随时间的变化分别表示为:其中,为调频连续激光的中心频率,为被测物体的移动速度,为调频激光的调频速率,为被测物体的距离,为光速,t为时间,为上升扫频和下降扫频的时间差。
11.具体的,所述f-p腔的腔长设置为100mm,其自由光谱为1.498ghz。
12.具体的,所述拟合出吸收频率与其对应的相位的曲线为:;其中,气体池的吸收峰对应的拍频信号的瞬时相位,为调频连续激光的回波信号的瞬时相位,为调频连续激光的本波信号的瞬时相位;对
泰勒展开,忽略二阶及高阶项,为拍频信号的瞬时相位的一阶微分,为气体池的吸收峰对应的频率,为本波信号与回波信号之间的时间延迟,为气体池对应的频率与拍频信号的瞬时相位之间的一次项拟合系数,为一次项拟合对应的截距常量。
13.具体的,所述待测目标的距离和速度为:其中,是激光器上升扫频模式对应的气体池的吸收峰对应的频率与气体池的吸收峰对应的拍频信号的瞬时相位进行一次项拟合出的斜率,是激光器下降扫频模式对应的气体池的吸收峰对应的频率与气体池的吸收峰对应的拍频信号的瞬时相位进行一次项拟合出的斜率,为激光器上升扫频和下降扫频的时间差,为激光器上升扫频模式对应的气体池的吸收峰对应的拍频信号的瞬时相位,为激光器下降扫频模式对应的气体池的吸收峰对应的拍频信号的瞬时相位,为激光器上升扫频模式对应的调频连续波激光器的调频速率,为激光器下降扫频模式对应的调频连续波激光器的调频速率,是与进行一次项拟合出的斜率。
14.本发明的有益效果:本发明方法经证实稳定性好,准确度高,只需要采集三路信号,包括测量路的拍频信号,气体池的吸收峰信号和法布里波罗腔的信号,便可以得到被测物体的距离和速度,提高了调频连续波多参数测量的效率。
附图说明
15.为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以
根据这些附图示出的结构获得其他的附图。
16.图1为本发明的调频连续波的调频非线性和非线性导致的频谱展宽现象图;图2为本发明的调频连续波同时测距和测速系统光路结构图;图3为本发明的基于h
13c14
n气体池的调频连续波同时测距和测速原理图;图4为本发明的h
13c14
n气体池的吸收峰信号图;图5为本发明的f-p腔信号、拟合的曲线、调频连续波的非线性误差的拟合和拟合的上升扫频对应的调频速率图;图6为本发明的在距离为4.5m左右,运动速度为2mm/s,5mm/s和10mm/s的实际测量结果图;图7为本发明的在运动速度为1mm/s、10mm/s,20mm/s和30mm/s时对应的频谱分析法的频谱结果图,以及频谱分析法和系统速度测量结果的误差棒图。
具体实施方式
17.应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
18.为了对本发明的技术特征、目的和有益效果有更加清楚的理解,现对本发明的技术方案精选以下详细说明。显然,所描述的实施案例是本发明一部分实施例,而不是全部实施例,不能理解为对本发明可实施范围的限定。基于本发明的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的其他所有实施例,都属于本发明的保护范围。
19.实施例一:本发明所采用的技术方案是:一种基于h
13c14
n气体池的调频连续波同时测距和测速方法及系统,该系统基于h
13c14
n气体池的吸收峰特性实现,系统包括调频连续波激光器 fmcw、掺铒功率放大器 edfa、光隔离器、光分束器、光耦合器、环形器 cir、准直镜 cm、光学混频器 oh、平衡探测器 、被测物体、h
13c14
n气体池、法布里波罗腔 f-p。
20.如图2所示,调频连续波同时测距和测速系统的激光光源是调频连续波激光器(fmcw),依次与掺铒功率放大器(edfa)和光隔离器直接连接,然后通过90/10的光分束器分成两路激光,其中光功率比例为90%的一路激光经过50/50的光分束器,分成了光功率相等的两路激光,其中一路激光作为测量路,另一路激光作为参考路,测量路的激光经过环形器(cir)后进入准直镜(cm),激光通过准直镜入射到被测目标角锥棱镜,之后激光沿着原方向返回到环形器(cir)中,与参考路的激光进入光耦合器后形成拍频信号,拍频信号经过光学混频器(oh)后产生90
°
相位偏移,最终通过平衡探测器得到拍频信号的正分量和交分量。
21.另一路光功率比例为10%的一路激光经过30/70的光分束器,其中光功率比例为30%的激光经过hcn气体池后进入光电探测器,得到hcn吸收峰信号,另一路光功率比例为70%的激光经过f-p腔后得到f-p腔信号。
22.重要的光学器件参数型号如下所示:调频激光器(fmcw)激光雷达型号为luna phoenix 1400,其调频范围为1515~1565 nm,调频速率范围为1~100nm/s,谱线宽度为1.5mhz。 在实际实验中,调频范围设置为1540-1560 nm,调频速率设置为100.01nm/s。
23.其次,我们使用的气室的类型是h
13c14
n(hcn-13-h(16.5)-25-fc/apc)。h
13c14
n气室的吸收波长信息如表1所示。
24.表1. h
13c14
n气室吸收峰波长信息
f-p 腔的型号是sa-200-12b,它的反射经的曲率半径是100mm因此它的自由光谱范围是1.498ghz。
25.本实例对往返运动的精密导轨进行测量,通过提取对应于气体池吸收峰的调频频率以及测量路拍频信号的相位信息拟合出包含被测物体距离和速度信息的曲线,以实现调频连续波同时测量动态物体的距离和速度。
26.步骤一,使用fmcw作为光源,调制方式为三角波调制,调频范围设置为1540nm到
1560nm,调频速率设置为100.04nm/s,如图1所示,调频连续波存在非线性。如图2所示,搭建基于马赫曾德尔的测量光路部分,上升扫频和下降扫频对应的拍频信号的相位分别是:,其中,为调频连续激光的中心频率,为被测物体的移动速度,为调频激光的调频速率,为被测物体的距离,为光速,为上升扫频和下降扫频的时间差;步骤二,如图2所示,通过光分束器将一部分fmcw光源分别接入到hcn标准气体池光路和f-p腔非线性校正光路。其中,标准气体池将吸收特定的调频频率的能量,形成吸收峰;f-p腔的腔长设置为100mm,其自由光谱为1.498ghz。使用标准气体池的吸收峰特性确定特定的调频频率,使用f-p腔拟合fmcw光源的调频时域图,消除非线性;步骤三,如图3(b)所示,对步骤一中采集到的测量路拍频信号进行希尔伯特变换,提取拍频信号的相位与时间的关系。如图3(a)所示,根据步骤二中的吸收频率,拟合出吸收频率与其对应的相位的曲线,如图3(c),拟合的曲线可以表示为:其中,是拟合曲线的斜率,上升扫频对应的斜率表示为,下降扫频对应的斜率表示为。根据步骤二中的式(a)和式(b),双向扫频的斜率分别表示为:步骤四,如图3(d)和3(e)所示,根据步骤二中的fmcw的光源调频时域图拟合出上升扫频和下降扫频的速率将上升扫频和下降扫频对应的离散点与测量得到的调频速率相乘,然后将双向扫频的离散点进行差分,最后将差分后的离散点进行一次项拟合。因此,待测目标的距离和速度可以表示为:
其中,是与进行一次项拟合出的斜率。
27.本示例的信号处理部分主要包括使用二次项拟合的方式提取h
13c14
n气体池的吸收峰、使用低通滤波提取f-p腔信号的峰值位置,分别如图4和图5(a)所示。此外,根据f-p腔的峰值位置确定调频连续激光器的实际啁啾时频图,得到双向扫频的调频速率,如图5(c)和5(d)所示。最终实际的双向扫频对应的拟合曲线如图5(b)所示,代入式(f)和式(g)可以同时得到被测物体的速度和距离。
28.本示例所述的一种基于h
13c14
n气体池的调频连续波同时测距和测速方法及系统,与传统的通过fft得到频谱图直接计算拍频信号的方法相比,本发明方法首先计算出对应于双向扫频的时间延迟,然后根据f-p腔拟合处对应于双向扫频的调频速率,最终得到包含速度和距离信息的拍频信号,进一步消除了调频激光器的非线性对测量准确性的影响。如图6和表2所示,本方法能够同时测量速度和距离,实现动态目标的多参数测量。如图7所示,在运动速度为1mm/s、10mm/s,20mm/s和30mm/s时,本发明方法相比于传统方法具有更好的稳定性和准确性。
29.表2.实际测量结果表本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护的范围由所附的权利要求书及其等效物界定。
30.需要说明的是,对于前述的各个方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本技术并不受所描述的动作顺序的限制,因为依据本技术,某一些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和单元并不一定是本技术所必须的。
31.在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详细描述的部分,可以参见其他实施例的相关描述。
32.本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、rom、ram等。
33.以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1