一种土壤气体成分的监测取样装置及监测取样方法与流程

文档序号:32946477发布日期:2023-01-14 11:11阅读:50来源:国知局
一种土壤气体成分的监测取样装置及监测取样方法与流程

1.本发明涉及土壤监测技术领域,尤其涉及一种土壤气体成分的监测取样装置及监测取样方法。


背景技术:

2.土壤中存在着rn、he、o2、n2、h2、co2、nh3、ch4、n2o等气体,不同的土壤环境下,土壤气体的主要成分也有显著不同,了解土壤气体中各物质的组分比例对研究土壤环境有显著作用。大气中温室气体浓度增加是导致全球变暖的主要因素,大气中co2、nh4、n2o是引起温室效应或全球变暖的主要气体,监测土壤环境中的co2、ch4、n2o等气体的含量,探明其源与汇和运移途径,可有效运用于环境监测等领域,而co2、h2、ch4、he、rn等带有深源信息的气体赋存于地球各圈层,地球深部的气体在壳幔活动中最容易向上逸出,地层断裂带是地下各类气体逸出的良好通道,它们浓度的变化能够灵敏和客观的反映断层活动强弱变化,监测上述气体的成分可了解地下断层的运动情况,可用于地震预测与地层研究领域。
3.为缓解温室效益与能源问题,人类进行了大量研究,进行了ccs、co
2-eor、co
2-ecbm等co2地质封存现场实验。为验证上述实验的封存效果,探究地下土壤环境与土壤气体中rn、he、o2、n2、h2、co2、nh3、ch4、n2o成分变化,无论是监测co2等封存气体沿断层泄漏安全情况还是诸如矿调、地震监测、环境监测等其他地质勘察工作中都尤为重要,上述气体在土壤中的占比情况有巨大差异,不同气体在水中的溶解度也有差异,监测方法与监测仪器的精度也有显著不同,不同水位下地层与土壤中的含水率会对上述气体成分的监测造成影响。而地下土壤中含水率、通透性、酸碱度、植物的根系与微生物的生理代谢作用均会对土壤气成分与排放产生影响。土壤水分变化会影响到土壤的通气状况,需要促进或者阻碍土壤中产生的co2与地下泄漏的co2扩散。随着土壤含水率的增高,土壤的通透性也会随之下降。渍水淹没环境下因水位原因使普通的监测仪器无法使用,而以往监测土壤环境(如ph、orp)、物理参数(孔隙率、渗透系数)与土壤气含量的方法通常为现场采样收集后进行实验室分析,通过实验室数据监测土壤环境,或是采用昂贵的实验仪器进行现场勘测,难以实时监测土壤环境与气体成分变化情况,也难以大规模多点取样与监测,无法及时详细的了解监测区内地下土壤环境与土壤气体的变化情况,难以通过上述方法对土壤的浅层环境进行针对性的改性,而且也无法在浅部地层进行大面积监测,无法获取地层综合表观参数(渗透系数、水位等参数)、气体样品中各气体的含量与流量。
4.因此目前需要克服以下技术难点:如何提高地下土壤环境与土壤气成分变化的监测效率,如何快速有效的实时监测地下土壤环境水位、渗透系数、含水率等表观特征与地层土壤气rn、he、o2、n2、h2、co2、nh3、ch4、n2o等成分的占比,如何克服渍水淹没环境对监测装置产生的影响,如何对监测区的浅部地层环境与土壤气体成分进行多点多参数的大面积监测,并通过监测到的土壤环境与土壤气体成分来了解监测区地下的物理变化与化学变化,如何根据监测数据对土壤氛围进行改性等。


技术实现要素:

5.本发明的目的在于提供一种土壤气体成分的监测取样装置及监测取样方法,克服渍水淹没环境对监测装置产生的影响,可对大片区域的地下浅部地层环境进行多参数监测,通过获取地层综合表观参数(渗透系数k、水位等)、各气体成分占比与气体流量来了解监测区地下的物理变化与化学变化。
6.本技术一方面实施例提出一种土壤气体成分的监测取样装置,包括:监测容器和取样管,所述监测容器的下部插入土壤中,监测容器的下端设有开口,监测容器内在开口上方的位置设有透水装置,监测容器的侧壁上设有进水多孔段,进水多孔段设于透水装置的上方,监测容器内设有气体传感器,气体传感器设于进水多孔段的上方。
7.所述取样管的一端连接监测容器,取样管的另一端连接真空泵,在监测容器与真空泵之间的取样管上连接有压差测量装置和定容容器,定容容器连接于压差测量装置和真空泵之间。
8.本技术通过在监测容器上设置透水装置和进水多孔段,防止在水位高时监测取样装置内部被淹没而影响监测与取样效果,使监测取样装置在渍水淹没的环境下正常监测。当水位正常时,土壤中的水分与气体缓慢通过进水多孔段和透水膜进入到监测容器内,直至监测容器内部样品环境与土壤环境一致。当水位过高时,多余的水分通过进水多孔段进入监测容器内,并通过底面的透水膜向土壤排出,控制监测容器的内部水位。
9.本技术通过样品数据与气体传感器的配合可快速了解土壤中异常点位的信息,可多点样品混合取样与单点取样相结合,详细监测土壤气体中的成分与气体含量的变化情况。
10.在一些实施例中,所述透水装置为透水膜。透水膜为双向透水膜。透水膜为亲水性材料,水分可正常穿过透水膜。
11.在一些实施例中,所述透水膜通过支架安装于监测容器内,支架设于透水膜的下方。支架的作用在于支撑透水膜,使透水膜与土壤之间留有一定空间,防止透水膜与土壤接触后砂石将透水膜刺破。
12.在一些实施例中,所述进水多孔段的材质为陶瓷或金属。进水多孔段采用固定的方式内嵌于监测容器的侧壁上。进一步的,金属可采用不锈钢材质,防止生锈。
13.在一些实施例中,还包括注入管,所述注入管插入监测容器内。可根据监测到的地下浅部地层与土壤环境表观参数信息(如渗透系数、水位、ph、气体含量比例等),通过注入管向监测容器内注入改性气体,可对监测区内的浅部土壤环境进行改性。
14.在一些实施例中,所述取样管、注入管分别与监测容器上部密封连接。监测容器封闭的构造可防止空气中其他的气体对土壤气体监测产生影响并保护气体传感器。
15.在一些实施例中,所述压差测量装置包括阻尼管、单向阀以及用于测量阻尼管前后两端压差的压差计,阻尼管和单向阀连接于监测容器和定容容器之间,单向阀连接于阻尼管和定容容器之间,压差计通过支管并联连接在阻尼管前后两端的取样管上。提供了一种压差测量装置的结构,可替代市售的压差流量计,可降低成本。
16.其中,压差计用于测量阻尼管前后两端压差,随时间推移,阻尼管两侧的压差会自动衰减,根据压差的衰减曲线可判断出地下土壤环境的通透性。
17.单向阀为标准的单向阀,其方向为从地下土壤到定容容器的固定方向,单向阀可
防止外部空气中的流体回流到监测点土壤上方的监测容器中污染其内部样品环境,而影响各气体成分的具体数值与装置内压力衰减情况,并且设置单向阀可增大真空泵的抽真空效果与采集地下流体样品的代表性。
18.阻尼管为通透性固定的毛细管、多孔管或由各种岩石岩芯等固定渗透系数的材料制成,可增加对监测取样装置抽真空后压力衰减的时间,并在阻尼管前后两侧产生压差,通过压差计对阻尼管两侧的压差衰减情况进行监测,在阻尼管渗透系数固定的情况下,根据阻尼管的不同的压差衰减曲线即可判断出地下土壤环境的通透性,并根据气体样品分析数据反演地下环境的表观特征与水位情况。
19.在一些实施例中,所述压差测量装置为压差流量计。通过市售的压差流量计代替上述的压差流量装置,可直接安装在监测取样装置内,简化结构。
20.在一些实施例中,所述取样管上设有第一控制阀,第一控制阀设于真空泵和定容容器之间,注入管上设有第二控制阀。第一控制阀用于控制取样管的通断,第二控制阀用于控制注入管的通断。
21.本技术另一方面实施例提出一种土壤气体成分的监测取样方法,利用上述的土壤气体成分的监测取样装置,包括如下步骤:
22.s1,在监测区内不同的监测位置上布置若干个监测取样装置,通过气体传感器初步监测各监测位置的土壤气体成分与含量,观察监测数据是否异常;
23.s2,当某一监测位置的气体传感器监测的数据存在异常时,开启该监测位置的监测取样装置的第一控制阀与真空泵,对该监测位置的土壤气体进行取样,将土壤气体抽取到定容容器内做进一步实验分析,并通过压差测量装置的监测数据来判断土壤环境的通透性;
24.s3,根据实验分析数据判断监测区土壤是否需要改性,当需要对监测区土壤进行改性时,确定需要改性的因素,开启注入管,将改性气体通过注入管通入监测容器内,改性气体通过进水多孔段进入到监测容器外部的土壤中进行改性。
25.在一些实施例中,若干个所述监测取样装置在监测区内进行矩阵式布置,形成矩阵式监测。通过多点获取监测区内地下流体样品,实现矩阵式大面积监测,并通过多点监测获取地下土壤的表观渗透率,及时反馈地下综合参数的变化,结合地质模型可实现较为精细的反演地下参数(水位、渗透系数、含水率、各气体含量与占比)与构造运动状态,反演地下泄漏点的位置及可能的泄漏量。
26.本发明的有益效果为:
27.(1)本发明通过在监测容器上设置透水装置和进水多孔段,防止在水位高时监测取样装置内部被淹没而影响监测与取样效果,使监测取样装置在渍水淹没的环境下正常监测;
28.(2)本发明通过样品数据与气体传感器的配合可快速了解土壤中异常点位的信息,可多点样品混合取样与单点取样相结合,详细监测土壤气体中的成分与气体含量的变化情况;
29.(3)本发明通过多点获取监测区内地下流体样品,实现矩阵式大面积监测,并通过多点监测获取地下土壤的表观渗透率,及时反馈地下综合参数的变化,结合地质模型可实现较为精细的反演地下参数(水位、渗透系数、含水率、各气体含量与占比)与构造运动状
态,反演地下泄漏点的位置及可能的泄漏量;
30.(4)本发明通过监测数据可选择通过注入改性气体的方式来调节监测区内的浅层地下土壤环境与氛围。
附图说明
31.本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,
32.其中:
33.图1为本技术实施例中的土壤气体成分的监测取样装置的结构示意图;
34.图2为本技术实施例中的监测取样装置的矩阵式排布示意图;
35.图3为本技术实施例1中不同通透性的土壤压差衰减曲线;
36.附图标记:
37.1-注入管;2-第二控制阀;3-气体传感器;4-监测容器;5-进水多孔段;6-透水膜;7-取样管;8-阻尼管;9-压差计;10-单向阀;11-定容容器;12-第一控制阀;13-真空泵;14-土壤;15-水位;16-监测取样装置。
具体实施方式
38.下面详细描述本发明的实施例,所述实施例的示例在附图中示出。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
39.下面参考附图描述本发明实施例的土壤气体成分的监测取样装置及监测取样方法。
40.如图1所示,本技术一方面实施例提出一种土壤气体成分的监测取样装置,包括:监测容器4和取样管7,监测容器4的下部插入土壤14中,监测容器4的下端设有开口,监测容器4内在开口上方的位置设有透水装置,监测容器4的侧壁上设有进水多孔段5,进水多孔段5设于透水装置的上方,监测容器4内设有气体传感器3,气体传感器3设于进水多孔段5的上方。
41.取样管7的一端连接监测容器4,取样管7的另一端连接真空泵13,真空泵13为标准产品,为土壤气体取样提供动力。在监测容器4与真空泵13之间的取样管7上连接有压差测量装置和定容容器11,定容容器11连接于压差测量装置和真空泵13之间。其中,定容容器11可增加监测取样装置的内部体积,可储存监测区内土壤样品并提高每次流体取样时样品的量,其容积大小可根据监测与取样要求决定,可为1l、2l或其他规格。
42.在一些具体的实施例中,监测容器4呈圆筒状。监测容器4下部的开口直接与地面土壤14连接,监测容器4覆盖在监测点上方,监测容器4上部与取样管7、注入管1连接,形成封闭结构,监测容器4内部安装有气体传感器3。监测容器4上设有进水多孔段5与透水装置,地层中的水分会通过进水多孔段5进入监测容器4内部,地层中气体到达进水多孔段5深度后也可通过进水多孔段5进入到监测容器4内,多余的水分会通过底部的透水装置排出,水分可正常穿过透水装置,进水多孔段5与透水装置可控制监测容器4内部的水位15保持在进水多孔段5的深度,防止渍水淹没后对监测容器4内部产生影响。
43.在一些具体的实施例中,进水多孔段5设于监测容器4的中段。
44.在一些具体的实施例中,透水装置为透水膜6。透水膜6为双向透水膜。透水膜6为亲水性材料,水分可正常穿过透水膜6。
45.在一些具体的实施例中,透水膜6通过支架安装于监测容器4内,支架设于透水膜6的下方。支架的作用在于支撑透水膜6,使透水膜6与土壤之间留有一定空间,防止透水膜6与土壤接触后砂石将透水膜6刺破。对于支架的具体结构可以有多种形式,为现有技术,在此不做赘述。
46.在一些具体的实施例中,进水多孔段5由多孔材质制作,具体的,进水多孔段5的材质为陶瓷或金属。进水多孔段5采用固定的方式内嵌于监测容器4的侧壁上。固定的方式为现有技术,在此不做赘述。进一步的,金属可采用不锈钢材质,防止生锈。
47.在一些具体的实施例中,气体传感器3的数量与类型根据监测工作的目标决定,可对监测容器4地下土壤中rn、he、o2、n2、h2、co2、nh3、ch4、n2o等气体的含量变化进行长期实时监测,因不同气体的含量会有显著差异,气体传感器3的精度并不能完全覆盖,气体传感器3仅是对地下各气体含量与百分比进行初步监测。当气体传感器3的监测数据存在异常时,需要使用真空泵13对有异常的监测区进行精细化的取样,在实验室环境下进行详细检测,通过各气体含量的变化情况可了解地下是否存在构造运动与化学反应,了解监测区封存气体是否存在泄漏,根据取样点确定泄漏位置与泄漏量。
48.在一些具体的实施例中,还包括注入管1,注入管1从监测容器4的上端插入监测容器4内。可根据监测到的地下浅部地层与土壤环境表观参数信息(如渗透系数、水位、ph、气体含量比例等),通过注入管1向监测容器4内注入改性气体,可对监测区内的浅部土壤环境进行改性。注入的气体根据地下环境与所需要的环境确定。
49.在一些具体的实施例中,取样管7、注入管1分别与监测容器4上部密封连接,监测容器4封闭的构造可防止空气中其他的气体对土壤气体监测产生影响并保护气体传感器3。
50.在一些具体的实施例中,取样管7与监测容器4的连接处位于监测容器4的上端,即取样管7连接于监测容器4的上端。气体传感器3设于监测容器4内部的上端面且靠近取样管7与监测容器4的连接处。
51.在一些具体的实施例中,压差测量装置为压差流量计。
52.在一些具体的实施例中,压差测量装置还可以为阻尼管8、单向阀10和压差计9。阻尼管8和单向阀10连接于监测容器4和定容容器11之间,单向阀10连接于阻尼管8和定容容器11之间,压差计9通过支管并联连接在阻尼管8前后两端的取样管7上。以替代上述的压差流量计,可降低成本。
53.其中,压差计9用于测量阻尼管8前后两端压差,随时间推移,阻尼管8两侧的压差会自动衰减,根据压差的衰减曲线可判断出地下土壤环境的通透性。
54.单向阀10为标准的单向阀,其方向为从地下土壤到定容容器11的固定方向,单向阀10可防止外部空气中的流体回流到监测点土壤上方的监测容器4中污染其内部样品环境,而影响各气体成分的具体数值与装置内压力衰减情况,并且设置单向阀10可增大真空泵13的抽真空效果与采集地下流体样品的代表性。
55.阻尼管8为通透性固定的毛细管、多孔管或由各种岩石岩芯等固定渗透系数的材料制成,可增加对监测取样装置抽真空后压力衰减的时间,并在阻尼管8前后两侧产生压差,通过压差计9对阻尼管8两侧的压差衰减情况进行监测,在阻尼管8渗透系数固定的情况
下,根据阻尼管8的不同的压差衰减曲线即可判断出地下土壤环境的通透性,并根据气体样品分析数据反演地下环境的表观特征与水位情况。
56.在一些具体的实施例中,取样管7上设有第一控制阀12,用于控制取样管7的通断。第一控制阀12设于真空泵13和定容容器11之间。取样管7用于收集监测区地下土壤的流体样品,并通过连接其他部件来测量土壤的通透性。可在部分气体传感器3价格昂贵或使用寿命低时,通过取样收集土壤样品进行对气体传感器3的补充,亦可在气体传感器3的测量参数出现监测异常时通过取样管7收集地下土壤气,将土壤气样品输送至相关实验设备进行进一步详细测试。
57.在一些具体的实施例中,注入管1上设有第二控制阀2,用于控制注入管1的通断。
58.本技术另一方面实施例提出一种土壤气体成分的监测取样方法,利用上述的土壤气体成分的监测取样装置,包括如下步骤:
59.s1,在监测区内不同的监测位置上布置若干个监测取样装置16,通过气体传感器3初步监测各监测位置的浅地土壤气体成分与含量等数据,观察各监测位置的监测数据是否异常;
60.s2,当某一监测位置的气体传感器3监测的数据存在异常时,或是当需要了解某一监测位置的土壤氛围时,开启该监测位置的监测取样装置的第一控制阀12与真空泵13,对该监测位置的土壤气体进行取样,将土壤气体抽取到定容容器11内做进一步实验分析,并通过压差测量装置的监测数据来判断土壤环境的通透性,获取土壤的表观渗透系数;
61.s3,根据实验分析数据判断监测区土壤是否需要改性,当需要对监测区土壤进行改性时,确定需要改性的因素(如土壤ph值),打开第二控制阀2,开启注入管1,将改性气体通过注入管1通入监测容器4内,改性气体通过进水多孔段5进入到监测容器4外部的土壤中进行改性,通过反应来改变其土壤氛围。
62.土壤中的水分会通过进水多孔段5进入到监测容器4内,并通过透水膜6缓慢排放,保障监测取样装置在渍水环境下仍然可以正常工作。
63.本技术通过取样时对监测取样装置进行抽真空,因地下土壤环境渗透系数不同,监测取样装置内部会形成压差,不同的渗透系数土壤压差的衰减曲线不同,通过衰减曲线可以反馈出地下土壤环境的通透性,通过气体传感器3与取样样品中的各气体成分含量可了解土壤氛围与亲和性。
64.如图2所示,在一些具体的实施例中,多个监测取样装置16在监测区等距布置进行矩阵式监测,可在监测区多点获取土壤情况与流体样品,准确了解流体特征。
65.在监测区内等距布置多个监测取样装置16,其数量根据监测区大小与监测需求确定。在监测区布置成如图2所示的矩阵式的排布方式,可多点多参数的获取地下流体样品与土壤气体综合参数。通过多个监测取样装置16的监测数据,可反演出异常点位的详细位置,并通过矩阵式监测的监测参数进行混合与单点取样,通过监测参数可向监测区的浅层地下土壤注入对应的流体改造地下环境氛围。
66.本技术可实现较为精细的监测,反馈浅地的表观数据与地下土壤环境如水位、土壤渗透率、ph数值与rn、he、o2、n2、h2、co2、nh3、ch4、n2o等气体物质含量与占比情况,根据监测数值与地质建模来反演地层的表观特征与地质运动状况。
67.当水位15正常时,土壤中的水分与气体缓慢通过进水多孔段5和透水膜6进入到监
测容器4内,直至监测容器4内部样品环境与土壤环境一致。当水位15过高时,多余的水分通过进水多孔段5进入监测容器4内,并通过底面的透水膜6向土壤14排出,控制监测容器4的内部水位,可防止因渍水对监测产生影响,保障装置能长期在野外复杂的地下环境工作。
68.以下通过具体的实施例对本技术做进一步阐述。
69.实施例1
70.如图1所示,本实施例提出一种土壤气体成分的监测取样装置,包括:监测容器4、气体传感器3、取样管7、阻尼管8、压差计9、单向阀10、定容容器11、注入管1、第一控制阀12和第二控制阀2。
71.监测容器4呈圆筒状,监测容器4的下部插入土壤14中,监测容器4的下端设有开口,监测容器4内在开口上方的位置安装有透水膜6,透水膜6为双向透水膜。透水膜6为亲水性材料,水分可正常穿过透水膜6。透水膜6通过支架安装于监测容器4内,支架设于透水膜6的下方。支架的作用在于支撑透水膜6,使透水膜6与土壤之间留有一定空间,防止透水膜6与土壤接触后砂石将透水膜6刺破。
72.监测容器4的侧壁的中段位置设有进水多孔段5,进水多孔段5位于透水膜6的上方,进水多孔段5为不锈钢材质,采用固定的方式内嵌于监测容器4的侧壁上。气体传感器3设于监测容器4内,气体传感器3位于进水多孔段5的上方。
73.监测容器4下部的开口直接与地面土壤14连接,监测容器4覆盖在监测点上方。当水位15正常时,土壤中的水分与气体缓慢通过进水多孔段5和透水膜6进入到监测容器4内,直至监测容器4内部样品环境与土壤环境一致。当水位15过高时,多余的水分通过进水多孔段5进入监测容器4内,并通过底面的透水膜6向土壤14排出,控制监测容器4的内部水位,可防止因渍水对监测产生影响,保障装置能长期在野外复杂的地下环境工作。
74.取样管7的一端连接监测容器4的上端,取样管7的另一端连接真空泵13。气体传感器3设于监测容器4内部的上端面且靠近取样管7与监测容器4的连接处。在监测容器4与真空泵13之间的取样管7上依次连接阻尼管8、单向阀10、定容容器11和第一控制阀12,压差计9通过支管并联连接在阻尼管8前后两端的取样管7上。其中,压差计9用于测量阻尼管8前后两端压差,随时间推移,阻尼管8两侧的压差会自动衰减,根据压差的衰减曲线可判断出地下土壤环境的通透性。单向阀10为标准的单向阀,其方向为从地下土壤14到定容容器11的固定方向。
75.阻尼管8可增加对监测取样装置抽真空后压力衰减的时间,并在阻尼管8前后两侧产生压差,通过压差计9对阻尼管8两侧的压差衰减情况进行监测,在阻尼管8渗透系数固定的情况下,根据阻尼管8的不同的压差衰减曲线即可判断出地下土壤环境的通透性,并根据气体样品分析数据反演地下环境的表观特征与水位情况。
76.在本实施例中,在实验测定含水率分别为15%、35%、55%的不同环境的土壤中,其测试的压差p1、p2、p3有如图3所示意的关系,根据衰减曲线可推测出土壤的表观渗透系数k。
77.注入管1从监测容器4的上端插入监测容器4内。可根据监测到的地下浅部地层与土壤环境表观参数信息(如渗透系数、水位、ph、气体含量比例等),通过注入管1向监测容器4内注入改性气体,可对监测区内的浅部土壤环境进行改性。注入的气体根据地下环境与所需要的环境确定。
78.取样管7、注入管1分别与监测容器4上部密封连接,监测容器4封闭的构造可防止空气中其他的气体对土壤气体监测产生影响并保护气体传感器3。
79.本实施例提出一种土壤气体成分的监测取样方法,利用上述的土壤气体成分的监测取样装置,包括如下步骤:
80.s1,在监测区内不同的监测位置上布置若干个监测取样装置16,通过气体传感器3初步监测各监测位置的浅地土壤气体成分与含量等数据,观察各监测位置的监测数据是否异常;
81.s2,当某一监测位置的气体传感器3监测的数据存在异常时,或是当需要了解某一监测位置的土壤氛围时,开启该监测位置的监测取样装置的第一控制阀12与真空泵13,对该监测位置的土壤气体进行取样,将土壤气体抽取到定容容器11内做进一步实验分析,并通过压差测量装置的监测数据来判断土壤环境的通透性,获取土壤的表观渗透系数;
82.s3,根据实验分析数据判断监测区土壤是否需要改性,当需要对监测区土壤进行改性时,确定需要改性的因素(如土壤ph值),打开第二控制阀2,开启注入管1,将改性气体通过注入管1通入监测容器4内,改性气体通过进水多孔段5进入到监测容器4外部的土壤中进行改性,通过反应来改变其土壤氛围。
83.土壤14中的水分会通过进水多孔段5进入到监测容器4内,并通过透水膜6缓慢排放,保障监测取样装置在渍水环境下仍然可以正常工作。
84.本实施例通过取样时对监测取样装置进行抽真空,因地下土壤环境渗透系数不同,监测取样装置内部会形成压差,不同的渗透系数土壤压差的衰减曲线不同,通过衰减曲线可以反馈出地下土壤环境的通透性,通过气体传感器3与取样样品中的各气体成分含量可了解土壤氛围与亲和性。
85.多个监测取样装置16在监测区等距布置进行矩阵式监测,可在监测区多点获取土壤情况与流体样品,准确了解流体特征。
86.在监测区内等距布置多个监测取样装置16,其数量根据监测区大小与监测需求确定。在监测区布置成如图2所示的矩阵式的排布方式,可多点多参数的获取地下流体样品与土壤气体综合参数。通过多个监测取样装置16的监测数据,可反演出异常点位的详细位置,并通过矩阵式监测的监测参数进行混合与单点取样,可通过二分法快速测量异常单点信息,可应对各种地下环境的监测与取样任务。通过监测参数可向监测区的浅层地下土壤注入对应的流体改造地下环境氛围。
87.本实施例可实现较为精细的监测,反馈浅地的表观数据与地下土壤环境如水位、土壤渗透率、ph数值与rn、he、o2、n2、h2、co2、nh3、ch4、n2o等气体物质含量与占比情况,根据监测数值与地质建模来反演地层的表观特征与地质运动状况。
88.在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
89.此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者
隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
90.在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或彼此可通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
91.在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
92.在本发明中,术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
93.尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1