一种测试系统及测试方法与流程

文档序号:33376505发布日期:2023-03-08 04:12阅读:63来源:国知局
一种测试系统及测试方法与流程
一种测试系统及测试方法
1.本技术是名为《一种测试系统及测试方法》的专利申请的分案申请,原申请的申请日为2021年04月13日,申请号为202110393071.2。
技术领域
2.本发明涉及测试技术领域,特别是涉及一种测试系统及测试方法。


背景技术:

3.钢筋混凝土广泛应用于隧道、楼宇、桥梁等各种结构中,对于这些大型结构进行定期监测可以大大降低因其崩坏而产生的生命财产损失。而在大型自然灾害比如洪水、地震、台风过后对结构进行针对性的检查也是非常有必要的。目前,可以将无源传感器嵌入混凝土中,以使混凝土传感器有效地监测混凝土的温度、湿度、受力变化、钢筋的移位和腐蚀等参数,并且,其具备成本低、实时、高效等优点。
4.这里,混凝土传感器在生产过程中也需要进行测试、校准等,以确保其准确性。现有的测试方法为:将混凝土传感器、供能通信设备以及笨重的混凝土模型放挪到空旷的场地,模拟实际工作场景进行供能距离测试。但,此测试方法需要较多的人力进行测试设备的挪移,导致测试效率低下;并且,在空旷的场地进行测试时地面会反射的电磁波会影响测试结果,导致测试结果准确性低。
5.因此,亟需一种测试方法来检测混凝土传感器。


技术实现要素:

6.为了克服现有技术的不足,本发明的目的是提供一种测试系统及测试方法。
7.为实现上述目的,本发明提供了如下方案:
8.一种测试系统,包括主机、信号发生器、能量传输天线、第一通信天线、数据采集器、隔离室、功率放大器和/或功率衰减器,所述能量传输天线和所述第一通信天线位于所述隔离室形成的空间内部,所述信号发生器与所述能量传输天线穿过所述隔离室连接,所述数据采集器与所述第一通信天线穿过所述隔离室连接,其中,所述隔离室用于隔离所述空间内部的信号与所述空间外部的信号;
9.所述主机生成控制指令发送给所述信号发生器,以控制所述信号发生器输出射频信号;所述能量传输天线接收所述信号发生器输出的射频信号,并进行发射,以使混凝土传感器获取电能;所述第一通信天线接收所述混凝土传感器传输的测试数据,并将所述测试数据传输给所述数据采集器,其中,所述混凝土传感器位于所述隔离室的空间内部;所述主机监测所述数据采集器的所述测试数据,并基于所述测试数据确定所述混凝土传感器的属性;
10.所述控制单元基于预先设定的信号输出规则生成控制指令;
11.将所述控制指令传输给所述信号发生器,以使所述信号发生器基于所述控制指令输出对应的射频信号;
12.所述主机还包括处理单元;所述处理单元监测所述数据采集器,以确定所述数据采集器是否接收到所述测试数据;在确定所述数据采集器接收到所述测试数据的情况下,基于所述测试数据,确定所述混凝土传感器的属性,其中,所述属性包括所述混凝土传感器的灵敏度以及所述混凝土传感器的姿态与所述混凝土传感器的传输距离之间的映射关系;
13.所述信号发生器输出射频信号的输出规则为先固定输出频率,再进行功率扫描,该功率扫描的过程为在当前固定输出频率上调整输出功率由大到小以0.5dbm的步长逐步降低;在测试完一个固定输出频率后,切换至下一个固定输出频率,继续按照上述输出规则进行功率扫描,以完成频率扫描;
14.所述功率放大器和/或功率衰减器设置在所述信号发生器与所述能量传输天线之间,以增强和/或减弱所述射频信号。
15.优选地,还包括:支撑装置,所述支撑装置包括支撑台、支撑杆以及活动连杆;所述支撑台、支撑杆以及活动连杆均位于所述隔离室的空间内部,所述支撑台的一侧与所述隔离室的内壁贴合设置,所述支撑杆连接所述支撑台的另一侧与所述活动连杆的一端,所述活动连杆的另一端与所述混凝土传感器连接,以调整所述混凝土传感器的姿态。
16.优选地,还包括数据线和馈线;
17.所述主机通过所述数据线与所述信号发生器连接,以及通过另一所述数据线与所述数据采集器;
18.所述信号发生器通过所述馈线穿过所述隔离室与所述能量传输天线连接,以及所述第一通信天线通过另一所述馈线穿过所述隔离室与所述数据采集器连接。
19.优选地,所述隔离室上设置有馈线过孔;
20.所述馈线穿过所述馈线过孔,使得所述馈线的一端置于所述空间内部,所述馈线的另一端置于所述空间外部。
21.优选地,还包括电磁波发射源,所述电磁波发射源位于所述隔离室的空间内部,以在所述隔离室的空间内部发射电磁波。
22.优选地,所述隔离室的内壁上设置有吸波材料,以吸收所述隔离室内的电磁波发射源发射的电磁波。
23.优选地,还包括能量采集天线和第二通信天线;所述能量采集天线和所述第二通信天线均设置在所述混凝土传感器上,所述能量采集天线采集所述能量传输天线发射的射频信号,所述第二通信天线将所述混凝土传感器生成的测试数据传输给所述第一通信天线。
24.一种测试方法,所述测试方法应用于上述测试系统,其包括:
25.生成控制指令,并基于所述控制指令,在隔离室内发射所述控制指令对应的射频信号,以使混凝土传感器获取电能,其中,所述隔离室用于隔离所述空间内部的信号与所述空间外部的信号;
26.接收所述混凝土传感器传输的测试数据,基于所述测试数据确定所述混凝土传感器的属性。
27.优选地,所述基于所述测试数据确定所述混凝土传感器的属性,包括:
28.基于射频信号和测试数据确定混凝土传感器的灵敏度;
29.根据该灵敏度与基准灵敏度之间的差值计算混凝土传感器的传输距离。
30.优选地,确定所述基准灵敏度的步骤包括:
31.在隔离室内发射测试射频信号,以使标准混凝土传感器获取电能;
32.接收标准混凝土传感器传输的校准测试数据;
33.基于测试射频信号和校准测试数据确定基准灵敏度;
34.确定所述标准混凝土传感器的步骤包括:
35.将功能正常的混凝土传感器置于混凝土模型中,其中,混凝土模型能够容纳混凝土传感器;
36.射频信号按照预先设定的测试频率输出射频信号;
37.通过移动脚手架调整能量传输天线与混凝土传感器之间的距离并记录,直至数据采集器无法获取测试数据;
38.在测量得到多个距离的情况下,确定处于中位的距离对应的混凝土传感器为标准混凝土传感器。
39.根据本发明提供的具体实施例,本发明公开了以下技术效果:
40.本发明实施例的测试系统能够在固定场地模拟多种实际的工作场景,无需搬运测试系统中的任何装置及设备,大大提高了测试效率;并且,通过搭建的隔离室不仅能够模拟电磁波在自由空间中传播的环境,还能够隔离其空间内部的信号与其空间外部的信号,避免电磁波因地面反射影响测试结果,提高了测试结果的准确性。
附图说明
41.为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
42.图1示出了本技术所提供的一种测试系统的结构示意图;
43.图2示出了本技术所提供的一种测试系统的物理结构示意图;
44.图3示出了本技术所提供的选择标准混凝土传感器时搭建的环境的结构示意图;
45.图4示出了本技术所提供的一种测试方法的流程图;
46.图5示出了本技术所提供的一种测试方法中基于所述测试数据确定所述混凝土传感器的属性的流程图;
47.图6示出了本技术所提供的一种测试方法中确定基准灵敏度的流程图;
48.图7示出了本技术所提供的一种测试方法中确定标准混凝土传感器的流程图。
49.附图标记说明:101-主机;1011-控制单元;1012-处理单元;102-信号发生器;103-能量传输天线;104-第一通信天线;105-数据采集器;106-隔离室;1061-馈线过孔;1062-隔离室的内壁;107-数据线;108-馈线;109-能量采集天线;110-第二通信天线;1111-支撑台;1112-支撑杆;1113-活动连杆;200-可移动脚手架;201-不间断电源;202-笔记本电脑;203-偶极子天线;204-平板天线;205-地面;206-混凝土模型;207-标准混凝土传感器。
具体实施方式
50.下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完
整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
51.在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本技术的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
52.本技术的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤、过程、方法等没有限定于已列出的步骤,而是可选地还包括没有列出的步骤,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤元。
53.本发明的目的是提供一种测试系统及测试方法,能够提高测试结果的准确性。
54.为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
55.第一方面,本技术实施例提供了一种测试系统,该测试系统用于对混凝土传感器进行测试。图1示出了该测试系统的结构示意图,该测试系统包括主机101、信号发生器102、能量传输天线103、第一通信天线104、数据采集器105以及隔离室106。其中,隔离室106为预先搭建的,并且其具备一定空间,在模拟实际的工作场景时,将主机101、信号发生器102以及数据采集器105置于隔离室106的空间外部,将能量传输天线103和第一通信天线104置于隔离室106的空间内部,信号发生器102与能量传输天线103穿过隔离室106连接,数据采集器15与第一通信天线104穿过隔离室连接。本技术实施例提供的包括隔离室106在内的测试系统,其置于固定的场地,无需大量人力搬运测试设备,大大提高了测试效率;并且,该测试系统连接于市电,消除了移动电源的供能时间限制,灵活度更高。
56.在具体实施中,主机101生成控制指令,并基于控制指令控制信号发生器102输出射频信号。具体地,主机101包括控制单元1011,该控制单元1011中存储有测试人员预先设定的信号输出规则,进而使得控制单元1011基于预先设定的信号输出规则生成控制指令;当然,该信号输出规则还可以是其他电子设备通过有线传输方式和/或无线传输方式传输给控制单元1011的,本技术实施例对此不做具体限定,只要控制单元1011能够获取到该信号输出规则即可。进一步地,控制单元1011在生成控制指令之后,便将控制指令传输给信号发生器102,以使信号发生器102基于控制指令输出对应的射频信号。其中,结合图2示出的测试系统的物理结构示意图可知,主机101的控制单元1011与信号发生器102通过数据线107连接,该数据线107用于传输控制指令。
57.其中,信号发生器102基于信号输出规则中的特定频率输出对应的射频信号,在具体实施中,该特定频率为混凝土传感器的工作频率范围内的任一频率,使得输出的功率范围为-30dbm到36dbm。具体地,信号输出规则为先固定输出频率,再进行功率扫描,该功率扫描的过程为在当前固定输出频率上调整输出功率由大到小以0.5dbm的步长逐步降低;在测试完一个固定输出频率后,切换至下一个固定输出频率,继续按照上述方式进行功率扫描,以完成频率扫描。优选地,为了确保信号发生器102能够输出特定的射频信号,本技术实施
例的测试系统还包括功率放大器和/或功率衰减器;在信号发生器102输出的最大射频信号低于特定的射频信号的上限的情况下,设置信号发生器102与功率放大器连接,以放大射频信号并将放大后的射频信号传输给能量传输天线103;在信号发生器102输出的最小射频信号仍高于特定的射频信号的下限的情况下,设置信号发生器102与功率衰减器设连接,以减弱射频信号并将减弱后的射频信号传输给能量传输天线103,本技术实施例中通过功率放大器或功率衰减器增大或者降低发射的射频信号来模拟信号发生器102与混凝土传感器之间距离的减小或增大,也即不需要人工干预调整信号发生器102与混凝土传感器之间的物理距离,操作方便。当然,还可以设置其他的数字调节器,例如数字衰减器,用以减小射频信号的步长等。
58.继续参照图2,信号发生器102与能量传输天线103通过馈线108连接,信号发生器102在生成射频信号之后,将射频信号传输给能量传输天线103,以使能量传输天线103将射频信号发射于隔离室106的空间内部。
59.在具体实施中,混凝土传感器被埋于混凝土下,因此本技术实施例的测试系统中设置混凝土传感器位于隔离室106的空间内部。考虑到混凝土传感器为无源传感器,也即其内部未设置电池,参照图1和图2,本技术实施例提供的测试系统还包括能量采集天线109,该能量采集天线109设置在混凝土传感器上,能量采集天线109能够实时采集能量传输天线103发射的射频信号,进而利用该射频信号为混凝土传感器提供电能,其中,能量传输天线103的工作频段涵盖了混凝土传感器上能量采集天线109的工作频段,并且能量传输天线103的形式可以为偶极子,喇叭天线,平板反射器天线中的任意一种。具体地,混凝土传感器中包括能量采集单元,该能量采集单元接收能量采集天线109传输的射频信号,以使混凝土传感器获取电能。
60.混凝土传感器还包括数据处理单元、数据存储单元、通信单元和传感器单元,混凝土传感器在获取到电能之后,也即数据处理单元、数据存储单元、通信单元和传感器单元均能够正常工作,也即传感器单元开始采集混凝土的一类或多类数据。之后,传感器单元将采集到的数据传输至数据存储单元,以使数据存储单元存储该数据;传感器单元还将采集到的数据传输至数据处理单元,以使数据处理单元进行封装、打包等处理之后,将处理得到的测试数据传输给通信单元。
61.进一步地,如图2所示,本技术实施例的测试系统还包括与第一通信天线104通信连接的第二通信天线110,第二通信天线110设置在混凝土传感器上,进而将混凝土传感器生成的测试数据传输给第一通信天线104,具体为混凝土传感器的通信单元将测试数据传输给第二通信天线110,进而第二通信天线110将测试数据传输给第一通信天线104。
62.继续参照图2可知,第一通信天线104与数据采集器105通过另一馈线108连接,第一通信天线104在接收到混凝土传感器传输的测试数据,将测试数据传输给数据采集器105。其中,数据采集器105与第一通信天线104数据采集器105的工作频段与混凝土传感器的通信单元的工作频段相同。这里,第一通信天线104的形式可以为偶极子,喇叭天线,平板反射器天线中的任意一种。
63.进一步地,主机101与数据采集器105通过另一数据线107连接,主机101通过数据线107实时监测数据采集器105的测试数据,并基于测试数据确定混凝土传感器的属性。具体地,主机101还包括处理单元1012;该处理单元1012监测数据采集器105,以确定数据采集
器105是否接收到测试数据;在确定数据采集器105接收到测试数据的情况下,基于测试数据,确定混凝土传感器的属性,属性包括混凝土传感器的灵敏度以及混凝土传感器的姿态与混凝土传感器的传输距离之间的映射关系。为了便于测试人员查看测试结果,处理单元1012还可以将测试数据、混凝土传感器的属性以数据可视化的形式进行展示。
64.其中,处理单元1012基于射频信号和测试数据确定混凝土传感器的灵敏度,处理单元1012能够监测到测试数据的情况下,射频信号指示的功率中最小的功率作为凝土传感器的灵敏度。根据该灵敏度与基准灵敏度之间的差值计算混凝土传感器的传输距离,并将混凝土传感器的姿态如空间角度与传输距离建立映射关系,在完成所有的频率扫描之后,得到多个映射关系,基于多个映射关系生成三维图像,并显示,进而完成对混凝土传感器的测试。值得说明的是,传感器单元含有多种传感器,包括但不限于温度传感器,湿度传感器,位移传感器,应力传感器。同样性能的能量采集芯片条件下,不同性能的能量采集天线109会被检测出不同的灵敏度。
65.这里,基准灵敏度利用标准混凝土传感器得到,具体为,将标准混凝土传感器置于隔离室106中,之后通过主机101设定测试频率,并且将主机101中功率输出模式设置为扫描模式,进而控制信号发生器102输出测试射频信号以固定步长由大到小逐步降低;同时,数据采集器105监测是否能采集到校准测试数据,主机101记录信号发生器102的测试射频信号与数据采集器105采集到的校准测试数据,将能够采集到校准测试数据的最低的功率作为标准混凝土传感器的灵敏度,并将该标准混凝土传感器的灵敏度作为基准灵敏度。
66.进一步地,图3示出了选择标准混凝土传感器时搭建的环境的结构示意图,值得说明的是,在选择标准混凝土传感器时使用的测试环境为户外真实搭建的,该环境中包括可移动脚手架200、不间断电源201、笔记本电脑202、数据采集器105、信号发生器102、馈线108、偶极子天线203、平板天线204、地面205、混凝土模型206、标准混凝土传感器207。具体地,不间断电源201、笔记本电脑202、数据采集器105、信号发生器102、馈线108、偶极子天线203、平板天线204放在一个脚手架200上,不间断电源201给笔记本电脑202、数据采集器105、信号发生器102供电;混凝土模型206、标准混凝土传感器207放在另一个脚手架200上。
67.在具体实施中,脚手架200的平台高于地面10米以上,进而能够降低测试环境中地面的影响;并且,脚手架200为可移动的机动脚手架,方便测试过程中调整两者的距离。
68.选择标准混凝土传感器的具体过程如下:首先,将功能正常的混凝土传感器置于混凝土模型(能够容纳混凝土传感器)中,其中,该混凝土模型为利用钢筋混凝土搭建的体积较小的仿真模型;之后,主机101中设定测试频率,并将功率输出模式设置为定值持续输出模式,同时将射频信号设置为实际应用场景中的值;在具体过程中,由近及远的缓慢调整能量传输天线103与混凝土传感器之间的距离,在逐渐拉开距离的过程中实时观察数据采集情况,在数据采集器105采集不到测试数据时停止调整能量传输天线103与混凝土传感器之间的距离,测量并记录当前能量传输天线103与混凝土传感器之间的距离;经过多次测试之后,确定处于中位的距离对应的混凝土传感器为标准混凝土传感器。
69.继续参照图2,隔离室106上设置有馈线过孔1061;在具体实施中,馈线108穿过馈线过孔1061,使得馈线108的一端置于空间内部,馈线108的另一端置于空间外部。
70.为了模拟电磁波在自由空间中的传输特性,本技术实施例中的测试系统还包括电磁波发射源,电磁波发射源位于隔离室106的空间内部,以在隔离室106的空间内部发射电
磁波。同时,隔离室106的内壁1062上设置有吸波材料如聚氨酯吸波海绵sa等,以吸收隔离室106内的电磁波发射源发射的电磁波,使得电磁波一点到另一点的传输路径只有一条,避免了电磁波反射影响测试数据导致测试结果不准确的问题。并且,隔离室106的外壁为冷轧钢板等高导磁材料,隔离室106上设置的隔离门也经过防电磁泄露处理,进而确保隔离室106能够隔离空间内部的信号与空间外部的信号,确保了模拟的电磁波的传输特性为准确的。
71.优选地,如图2示出的,测试系统还包括支撑装置,支撑装置包括支撑台1111、支撑杆1112以及活动连杆1113;支撑台1111、支撑杆1112以及活动连杆1113均位于隔离室106的空间内部,支撑台1111的一侧与隔离室106的内壁1062贴合设置,支撑杆1112连接支撑台1111的另一侧与活动连杆1113的一端,活动连杆1113的另一端与混凝土传感器连接,通过调整活动连接杆能够实现调整混凝土传感器的姿态的目的。
72.本技术实施例的测试系统能够在固定场地模拟多种实际的工作场景,无需搬运测试系统中的任何装置及设备,大大提高了测试效率;并且,通过搭建的隔离室不仅能够模拟电磁波在自由空间中传播的环境,还能够隔离其空间内部的信号与其空间外部的信号,避免电磁波因地面反射影响测试结果,提高了测试结果的准确性。
73.基于同一发明构思,本技术的第二方面还提供了一种应用于上述测试系统的测试方法,由于本技术中的测试方法解决问题的原理与本技术上述测试系统相似,因此测试方法的实施可以参见方法的实施,重复之处不再赘述。
74.图4示出了本技术实施例提供的一种测试方法的流程图,具体包括:
75.s401,生成控制指令,并基于控制指令,在隔离室内发射控制指令对应的射频信号,以使混凝土传感器获取电能,其中,隔离室用于隔离空间内部的信号与空间外部的信号;
76.s402,接收混凝土传感器传输的测试数据,基于测试数据确定混凝土传感器的属性。
77.在又一实施例中,图5示出了基于测试数据确定混凝土传感器的属性的方法流程图,具体包括:
78.s501,基于射频信号和测试数据确定混凝土传感器的灵敏度;
79.s502,根据该灵敏度与基准灵敏度之间的差值计算混凝土传感器的传输距离。
80.在又一实施例中,图6示出了确定基准灵敏度的方法流程图,具体包括:
81.s601,在隔离室内发射测试射频信号,以使标准混凝土传感器获取电能;
82.s602,接收标准混凝土传感器传输的校准测试数据;
83.s603,基于测试射频信号和校准测试数据确定基准灵敏度。
84.在又一实施例中,图7示出了确定标准混凝土传感器的方法流程图,具体包括:
85.s701,将功能正常的混凝土传感器置于混凝土模型中,其中,混凝土模型能够容纳混凝土传感器;
86.s702,射频信号按照预先设定的测试频率输出射频信号;
87.s703,通过移动脚手架调整能量传输天线与混凝土传感器之间的距离并记录,直至数据采集器无法获取测试数据;
88.s704,在测量得到多个距离的情况下,确定处于中位的距离对应的混凝土传感器
为标准混凝土传感器。
89.本发明的有益效果如下:
90.本发明实施例能够在固定场地模拟多种实际的工作场景,无需搬运测试系统中的任何装置及设备,大大提高了测试效率;并且,通过搭建的隔离室不仅能够模拟电磁波在自由空间中传播的环境,还能够隔离其空间内部的信号与其空间外部的信号,避免电磁波因地面反射影响测试结果,提高了测试结果的准确性。
91.本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
92.本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1