轴径向载荷共同作用下摇摆轴承摩擦特性测量装置及方法
【技术领域】
[0001] 本发明涉及一种轴径向载荷共同作用下摇摆轴承摩擦特性测量装置及方法,应用 于液体火箭摇摆发动机的摇摆轴承在径向、轴向载荷共同作用情况下,按一定摆角和频率 运动的摩擦力矩测量。
【背景技术】
[0002] 摇摆轴承是液体火箭摇摆发动机的关键部件,工作时要承受大吨位径向载荷、轴 向载荷,并按一定频率进行小角度摆动。摆轴承的摩擦特性直接影响伺服驱动系统的负载 和动态特性,乃至影响箭体的姿态控制精度,因此需要精确测量摇摆轴承在工作工况下的 摩擦特性。受摇摆轴承结构形式和工作工况的影响,目前国内外轴承摩擦力矩主要通过旋 转机械带动轴承旋转,测量旋转机械输出扭矩来测量轴承摩擦力矩,该方法只能测量轴承 小量级径向载荷作用下的摩擦力矩,且轴承运动为整周转动,与火箭发动机摇摆轴承实际 工作状态不同,因此不能用于液体火箭摇摆发动机摇摆轴承摩擦力矩测量。
【发明内容】
[0003] 为解决现有摇摆轴承摩擦力矩测量装置的测量局限性,本发明提供一种摇摆轴承 摩擦特性测量装置及方法。
[0004] 本发明解决上述问题的技术解决方案:
[0005] -种轴径向载荷共同作用下摇摆轴承摩擦特性测量装置,其特殊之处在于:包括 两个承载板、6个同规格的摇摆轴承,1个工艺轴及一个摇摆轴;
[0006] 所述6个同规格的摇摆轴承包括2个被测试验轴承、2个工艺轴承及2个辅助轴承;
[0007] 两个承载板沿竖直方向平行设置,工艺轴与摇摆轴沿两个承载板的高度方向由上 而下水平设置,工艺轴的两端各通过1个所述的辅助轴承与对应端的承载板连接,摇摆轴 的两端各通过1个所述的被测试验轴承与对应端的承载板连接,2个工艺轴承设置在摇摆轴 的中间位置;
[0008] 所述摇摆轴承摩擦特性测量装置还包括径向力加载组件、轴向力加载组件、摇摆 驱动组件及测量组件;
[0009] 所述径向力加载组件用于对被测试验轴承、工艺轴承及辅助轴承施加径向力,所 述轴向力加载组件用于对被测试验轴承、辅助轴承施加轴向力,所述摇摆驱动组件用于对 摇摆轴施加摇摆驱动力;
[0010] 所述测量组件包括第一载荷传感器4、第二载荷传感器5、第三载荷传感器16、第四 载荷传感器10、位移传感器11及扭矩测量传感器26,所述第一载荷传感器4设置用于测量左 轴向载荷加载伺服油缸的输出力,所述第二载荷传感器5设置用于测量右轴向载荷加载伺 服油缸的输出力,所述第三载荷传感器16用于测量径向载荷加载伺服油缸的输出力,所述 第四载荷传感器10用于测量摇摆驱动伺服油缸的输出力,所述位移传感器11用于测量摇摆 驱动伺服油缸的行程,
[0011] 所述扭矩测量传感器26用于测量摇摆轴的输出扭矩。
[0012] 以上为本发明的基本结构,基于该基本结构,本发明还作出以下优化限定:
[0013] 上述径向力加载组件包括承力平台、径向载荷加载伺服油缸及搭建在承力平台上 的承力架,
[0014] 所述工艺轴的轴向中心通过上连接件与承力架的顶部连接,所述径向载荷加载伺 服油缸通过下连接件与摇摆轴中心处的两个工艺轴承连接。所述径向加载伺服油缸下端固 定在承力平台上。
[0015] 上述轴向力加载组件包括左轴向载荷加载伺服油缸、右轴向载荷加载伺服油缸、 左承力柱、右承力柱,所述左轴向载荷加载伺服油缸位于左侧的承力板的左侧,所述右轴向 载荷加载伺服油缸位于右侧的承力板的右侧,所述左轴向载荷加载伺服油缸与右轴向载荷 加载伺服油缸的施力方向位于同一水平直线,所述左轴向载荷加载伺服油缸的右端对左侧 的承力板施加轴向拉力,所述右轴向载荷加载伺服油缸的左端对右侧的承力板施加轴向 拉力,所述左承力柱与右承力柱固定设置在承载平台上,所述左轴向载荷加载伺服油缸的 左端与左承力柱连接,所述右轴向载荷加载伺服油缸的右端与右承力柱连接。
[0016] 上述摇摆驱动组件包括摆臂、摇摆驱动伺服油缸及固定底座,所述摆臂水平设置, 所述固定底座位于承力平台上,所述摇摆驱动伺服油缸竖直设置在固定底座上,所述摆臂 的一端与摇摆驱动伺服油缸的驱动端铰接,所述摆臂的另一端与摇摆轴固定连接。
[0017] 上述径向载荷加载伺服油缸、左轴向载荷加载伺服油缸、右轴向载荷加载伺服油 缸及摇摆驱动伺服油缸轴均为液压伺服油缸,轴向液压伺服油缸和径向液压伺服油缸为载 荷闭环反馈控制,摇摆驱动液压伺服油缸为位移闭环反馈控制。
[0018] 上述左右两个辅助轴承距离径向力加载组件加载轴线位置与左右两个被测试验 轴承距离径向力加载组件加载轴线位置相等,径向加载伺服油缸载荷施加在两个工艺轴承 上;
[0019] 摇摆轴轴心和工艺轴轴心距离承载板上轴向加载点距离相等,轴向加载组件别对 左右两个承载板施加大小相等、方向相反的水平向载荷。
[0020] 上述摆臂水平位置为摇摆轴摆动的零位。
[0021] 本发明还提供一种轴径向载荷共同作用下摇摆轴承摩擦特性测量方法,其特殊之 处在于:包括下列步骤:
[0022] (1)对摇摆轴承施加径向载荷,摇摆伺服油缸驱动摆臂按摇摆轴承要求的摆角和 频率带动摇摆轴摆动,扭矩传感器测量摇摆轴输出扭矩,计算摇摆轴上的摇摆轴承在径向 载荷单独作用下每一级的摩擦力矩;扭矩传感器测量的扭矩为摇摆轴上四个轴承径向载荷 作用下的总摩擦力矩,单个轴承径向载荷作用下摩擦力矩Λ?
[0023] (2)对试验装置左右两个承载板的轴向载荷加载点同时施加额定轴向载荷,并施 加径向载荷,摇摆伺服油缸驱动摆臂按摇摆轴承要求的摆角和频率摆动,测量摆动过程摇 摆轴的输出扭矩,根据轴承在径向载荷单独作用下的摩擦力矩,计算径向载荷和轴向载荷 同时作用情况下被测试验轴承摩擦力矩,
[0024]
[0025] 式中:
[0026] Mi -摇摆轴承径向载荷单独作用下的摩擦力矩;
[0027] M2-摇摆轴承径向载荷及轴向载荷共同作用下摩擦力矩;
[0028] ?\-径向载荷单独下扭矩测量传感器测量的摇摆轴输出力矩。
[0029] Τ2 -对径向载荷及轴向载荷共同作用下扭矩测量传感器测量的摇摆轴输出力矩。
[0030] 本发明与现有技术相比,优点是:
[0031] 1、本发明的在摇摆轴上采用工艺轴承平衡径向载荷,并利用辅助轴承平衡轴向载 荷,解决了轴承摩擦测量过程被测试验轴承既要转动、又要施加径向载荷,同时还要施加轴 向载荷的难题;
[0032] 2、本发明在摇摆轴一端利用摇摆驱动伺服油缸带动驱动摆臂摆动,带动摇摆轴摆 动,真实的模拟了摇摆轴承实际工作的摆动角度和频率,且伺服驱动油缸采用闭环反馈控 制,摆动角度和频率精度高;
[0033] 3、本发明中径向载荷和轴向载荷均采用闭环载荷控制,摇摆伺服驱动系统的摆臂 零位处于水平状态,当摆臂摆动按要求摆动过程中对系统产生附加载荷时,液压伺服控制 器能够及时修正载荷,保证了载荷的准确性,从而保证了测量结果的准确性。
[0034] 4、本发明在摇摆轴与摆臂之间安装扭矩传感器,能够直接测量试验过程摇摆轴的 输出扭矩,测量数据无额外因素影响,数据准确度高。
[0035] 5、本发明具有适用于各种液体火箭发动机摇摆轴承摩擦特性测量的特点,也适用 于其它摆动轴承摩擦特性测量,且结构容易实现,成本低,载荷加载精度高、轴承摇摆边界 准确,系统测量精度高。
【附图说明】
[0036] 图1为本发明单独施加径向载荷主视图;
[0037] 图2为本发明轴向、径向载荷同时加载主视图;
[0038]图3为本发明剖视图;
[0039] 图4为本发明摇摆轴承安装位置局部放大视图;
[0040] 图5为本发明控制原理图;
[0041] 图6为2个被测试验轴承在径向载荷和轴向载荷同时作用情况摩擦力矩随加载级 变化曲线。
[0042]图标记说明:1_承力平台;2-左承力立柱1;3_左轴向载荷加载伺服油缸1;4、第一 载荷传感器;5-第二载荷传感器;6-右轴向载荷加载伺服油缸2; 7-右承力立柱2; 8-龙门架; 9_摆臂;10-第四载荷传感器;11-位移传感器;12-摇摆驱动伺服油缸;13-固定底座;14-连 接件;15-固定螺母;16-第三载荷传感器;17-径向载荷加载伺服油缸;18-平台承力点;19-辅助轴承;20-工艺轴;21-承载板;22-摇摆轴;23-被测试验轴承;24-工艺轴挡圈;25-摇摆 轴挡圈;26-扭矩测量传感器;27-液压伺服控制器。
【具体实施方式】
[0043]如图1所示,摩擦特性测量装置包括摇摆轴承、径向加载组件、轴向加载组件、摇摆 驱动组件、扭矩测量传感器。径向加载组件上左右2个承载板与摇摆轴之间安装的摇摆轴承 为被测试验轴承23,摇摆轴22与径向载荷加载伺服油缸17之间安装的2个摇摆轴承为工艺 轴承25,2个承载板21与工艺轴20之间安装的摇摆轴承为辅助轴承19。径向载荷由径向力加 载组件在竖直方向加载。被测试验轴承23的轴向载荷通过2个轴向加载组件分别在水平方 向对承载板21加载点施加方向相反的拉力载荷来实现。摇摆驱动组件通过摆臂9驱动摇摆 轴22按一定频率的小角度摆动实现轴承内圈的摆动。扭矩测量传感器26安装在摆臂9与摇 摆轴22之间测量摇摆轴的输出扭矩。摇摆轴承轴、径向载荷共同作用下摩擦力矩测量过程 首先单独施加径向载荷,摇摆驱动系统驱动摇摆轴摆动,扭矩