流量控制装置及其控制系统、控制方法与流程

文档序号:14653435发布日期:2018-06-08 22:26阅读:234来源:国知局
流量控制装置及其控制系统、控制方法与流程

本发明涉及一种电子控制的流量控制装置。



背景技术:

电动汽车热管理系统中包含冷却液循环系统,其由热转换器、功率电子、驱动电机、车载充电器、储水壶、电动水泵、换向阀、散热水箱高温区、高压PTC、空调散热器组成,换向装置通过管路循环连接,可用于切换冷却液的流向;比如混合动力汽车也通常增加PTC加热装置来弥补发动机余热的不足,此时可能需要将冷却液切换通向PTC加热装置,在切换PTC加热装置的过程中,也需要使用换向阀来切换冷却液流向。

目前冷却液换向装置在混合动力和纯电动汽车行业中有着十分广泛的应用,比如电机驱动活塞阀,所述活塞阀通过在其阀体中安装阀芯组件,该阀芯组件通过阀芯轴与齿轮减速机构连接,齿轮减速机构在电机驱动下带动阀芯组件实现往复直线运动,改变密封位置。然而活塞阀所采用的密封圈由橡胶材料制成,在活动阀芯的挤压下容易过分变形或损坏,因此使用一段时间后活动阀芯容易发生堵塞而停止运动,影响活塞阀在系统中正常使用。



技术实现要素:

本发明的目的在于提供一种可及时应对停转状况的流量控制装置。

为实现上述目的,本发明流量控制装置采用如下技术方案:一种流量控制装置,包括外壳、阀体组件以及驱动控制部件,所述外壳第一接口以及第二接口,所述阀体组件部分收容于所述外壳内;所述阀体组件包括可动阀件以及传动部分,所述可动阀件相对于外壳可动设置;在所述传动部分带动下,所述可动阀件能够导通或截断所述第一、第二接口之间形成的流通通道;所述驱动控制部件包括控制单元、动力输出部、磁性元件以及检测元件,所述动力输出部为可动阀件提供动力,所述检测元件与所述控制单元电性连接,该磁性元件与动力输出部相组装且相对固定,所述动力输出部能够带动该磁性元件转动,所述检测元件与磁性元件的外周侧相对设置,该检测元件能够感应所述磁性元件的磁极变化。

本发明还公开一种流量控制装置的控制系统,至少包括:磁性元件,能够与所述流量控制装置的动力输出部同步进行圆周运动,该磁性元件包括至少一对磁极,每对磁极包括N极和S极,N极和S极沿所述动力输出部的圆周方向间隔分布,当所述磁性元件圆周运动时,所述磁极依次通过所述检测元件的感应区域;检测元件,能够与所述磁性元件的磁极相互作用,而检测到反馈信号;控制单元,设置有设定对比上限,根据检测到的反馈信号与设定对比上限进行比较,判断所述动力输出部是否处于正常工作状态,并控制该动力输出部进行调整。

本发明还公开一种流量控制装置的控制方法,所述流量控制装置通过设置控制单元、动力输出部、磁性元件以及检测元件相配合对流量控制装置进行检测和/或控制,所述磁性元件与所述动力输出部相对固定设置,所述磁性元件包括至少两个磁极,所述控制方法包括以下步骤:

S1、电机运行,所述磁性元件进行转动;

S2、所述检测元件感应所述磁性元件的磁极变化并形成反馈信号;

S3、所述控制单元实时采集所述反馈信号并得到反馈信号的运行持续时间;

S4、所述控制单元根据采集到的每个反馈信号的运行持续时间判断所述步进电机是否发生堵转,如果是,发出堵转报警信号,如果否,判断所述步进电机为正常工作,继续进行S2。

与现有技术相比,本发明通过磁性元件与动力输出部相组装且相对固定,再通过动力输出部带动该磁性元件转动,而检测元件与磁性元件相对设置,该检测元件位于所述磁性元件的磁场范围内,该检测元件能够感应所述磁性元件的磁极变化,能够获取可动阀件是否堵转的结果,以便及时应对流量控制装置的停转状况。

附图说明

图1是流量控制装置的立体组合示意图;

图2是图1所示流量控制装置的部分剖视示意图;

图3是图1所示流量控制装置的部分元件立体组合图,并示意地显示出驱动控制部件及传动系统的组合图;

图4是图1所示流量控制装置的阀体组件、动力输出部以及传动系统的立体示意图;

图5是图1所示流量控制装置的部分元件立体组合图,并示意地显示出驱动控制部件及传动系统的组合图;

图6是图5所示流量控制装置的部分剖视图,主要示意地显示出驱动控制部件的关系示意图;

图7是图5所示流量控制装置的部分元件立体组合图,并示意地显示出驱动控制部件的组合图;

图8是图3所示印刷电路板与相关电子元器件的组合示意图;

图9是图8所示印刷电路板与检测元件的局部放大示意图;

图10是图7所示磁性元件与检测元件的位置关系示意图,并示意地显示出磁性元件转动角度与可动阀片转动角度的对应关系;

图11是流量控制装置的检测元件提供给控制单元的部分反馈信号示意图;

图12是流量控制装置的控制方法的流程示意图。

具体实施方式

请参阅图1、图2所示,所述流量控制装置100可应用于换热系统,比如车用空调系统或者家用空调系统等,具体地所述流量控制装置的流通介质可为水、水与其他液体的混合介质或者其他具有导热能力的冷却介质,流量控制装置100控制流通介质的分配并使流通介质与换热系统的其他工作介质进行热交换,再通过调节分配所述流量控制装置的介质出口流量来控制换热系统流路的介质流通量,能够提升优化该换热系统流路的控制性能。具体地,流量控制装置100能够用于新能源汽车空调如暖通空调、电池冷却或者电池加热系统时,通过多通结构的设置,该流量控制装置将来自进口的工作介质按照比例分配到不同出口或者在不同进出口之间切换,流量控制装置100可位于两个或多个换热系统回路,能够配合所述换热系统进行流路切换,和/或使得换热系统不同流路的流量按照比例进行分配。

所述流量控制装置100包括外壳1、阀体组件2以及驱动控制部件3,阀体组件2至少部分收容于所述外壳1的安装腔内,阀体组件2包括可动阀件21以及传动部分22,可动阀件21相对于外壳可动设置,本实施方式中阀体组件2还包括固定阀件,固定阀件23与外壳相对固定且密封设置,且该可动阀件21与固定阀件23之间密封设置,具体地,可动阀件为可动阀片、固定阀件为固定阀片或外壳的一部分形成,此处定义“固定”、“可动”均相对于外壳而言,“固定”情况下仍然允许微小晃动的情形;外壳1还具有至少两个接口,具体地本实施方式外壳包括三个接口:第一接口102、第二接口103以及第三接口104,在所述传动部分带动下,所述可动阀件21能够导通或截断所述第一、第二接口之间的流通通道,第一接口102与第二接口103中一个为进口、另一个为出口,实现一进一出的控制模式,也可具有三个以上接口,实现一进两出、两进多出和/或两进一出三进两出的控制模式,驱动控制部件3驱动传动部分22,该传动部分22带动可动阀件21转动,可动阀件旋转转动过程中,通过可动阀件21的连通口,实现相邻接口的导通,也可通过控制可动阀件的转角来控制接口的流通量,从而通过旋转可动阀件实现流量控制和工作介质换向,多用途、便于通用化使用。

请参考图3至图8所示,驱动控制部件3包括动力输出部31、磁性元件32、检测元件33、控制单元34以及印刷电路板35,该检测元件33、控制单元34电性连接,流量控制装置100包括驱动壳体30,具体包括第一壳体、第二壳体,两者可通过焊接实现密封设置,驱动壳体30形成有安装空间300,驱动控制部件3位于该安装空间300,有利于驱动控制部件的防水防尘;检测元件33、控制单元34分别与印刷电路板35电连接,具体地,检测元件33与控制单元34分别焊接到印刷电路板35。磁性元件32与动力输出部31相组装且相对固定,所述动力输出部能够带动该磁性元件转动,检测元件33与磁性元件32相对设置,该检测元件位于磁性元件的磁场范围内,该检测元件能够感应磁性元件的磁极变化。检测元件33通过感应所述磁性元件32的磁极变化而得到反馈信号,该反馈信号与所述磁性元件的位置变化量相对应,以提供检测到的信号提供给控制单元,所述控制单元能够收到所述反馈信号、并判断所述动力输出部是否处于正常工作状态。印刷电路板35包括主体基部351、悬伸部352,该悬伸部自主体基部一端凸伸设置,外壳1包括第一定位凸部11、第二定位凸部12,该第一定位凸部位于所述悬伸部352的两侧,所述第二定位凸部12与印刷电路板的主体基部351相组装;所述检测元件33焊接组装在该悬伸部352的一侧,且与所述磁性元件32面对设置,所述驱动控制部件的控制单元34以焊接方式组装在所述主体基部351,该控制单元与所述检测元件布置在印刷电路板的同一侧,便于印刷电路板制造,或该控制单元与所述检测元件布置在印刷电路板的不同侧,能够相对减小印刷电路板组件体积,所述印刷电路板35设置有印刷电路(未图示),该印刷电路电性连接所述控制单元34与所述检测元件33。所述流量控制装置还包括信号对接部36,所述信号对接部的信号端子361与所述印刷电路板35电性连接,具体地印刷电路板35包括第一端部353、第二端部354,所述悬伸部352自该第一端部向外延伸且成悬伸设置,该信号对接部的信号端子组装焊接到所述第二端部354,为信号对接部与印刷电路板之间进行电性信号传输建立电力路径。

流量控制装置包括动力部件,本实施方式动力部件采用步进电机4,该步进电机位于驱动壳体30的安装空间300内,通过控制单元34采集步进电机运行信号,根据采集到的步进电机的运行信号对步进电机发出不同的控制信号,这样控制单元对步进电机形成控制。电源向步进电机和控制单元供电。控制单元可以设置在流量控制装置也可以不设置在流量控制装置,而是设置在流量控制装置应用的主控制系统中,流量控制装置设置有接收控制信号并将控制信号转化为驱动信号的驱动器,这样同样能实现对流量控制装置的控制。所述步进电机包括电机定子组件40、电机输出轴,该电机输出轴自电机定子组件的一侧向外凸伸,且该电机输出轴形成所述动力输出部31,即步进电机4提供所述动力输出部31,沿电机输出轴延伸方向,该悬伸部352位于电机定子组件40的一侧,沿电机输出轴的径向方向,悬伸部352位于磁性元件外周的一侧,且检测元件33固定于该悬伸部的朝向该磁性元件32的一侧,进一步该检测元件33与磁性元件的外周侧之间具有间距,从而检测元件能够感应磁性元件的磁极变化。具体地在印刷电路板所在平面上,电机输出轴的延伸方向的投影与悬伸部352延伸方向呈相交设置,或者电机输出轴的延伸方向的投影与悬伸部352延伸方向也可平行设置,从而满足流量控制装置的驱动控制器壳体内各元件的空间布置要求。

流量控制装置还包括电机组件,该电机组件还包括第一接地元件41、第二接地元件42,所述第一、第二接地元件相组装固定,第二接地元件42与印刷电路板35焊接且电性连接,步进电机4还包括信号传输端子43,该信号传输端子的末端尾部插接在印刷电路板的安装孔内,可将电性控制信号传输给步进电机。

请结合图9至图11所示,动力部件(步进电机)驱动所述动力输出部31进行转动,磁性元件32随该动力输出部转动,检测元件33感应磁性元件32的磁极变化而得到脉冲信号,通过检测脉冲信号的脉冲时间宽度是否在正常工作范围内,具体地检测脉冲时间宽度是否大于正常工作范围的上限;或检测元件33感应所述磁性元件的磁极变化而得到周期性变化信号,通过检测所述周期性变化信号的周期时间宽度是否在正常工作范围内,来判断所述流量控制装置的可动阀件是否发生堵转。

步进电机4提供动力输出部,磁性元件32安装于该动力输出部,步进电机4运行时,该动力输出部31进行转动,磁性元件32随该动力输出部31转动,检测元件33与磁性元件32相互作用,检测元件33用于感应磁性元件32的磁场变化并形成脉冲信号,检测元件能够得到脉冲信号,通过检测脉冲信号的转换间隔时间可判断所述流量控制装置的可动阀件是否发生堵转;控制单元34包括微处理器,微处理器固定于印刷电路板35上,微处理器用于采集反馈信号、对反馈信号进行判断是否正常。其中,检测元件33可以为霍尔传感器或者位置传感器或者其他位置检测器,该霍尔传感器的反馈信号为霍尔信号,位置传感器的反馈信号为霍尔信号。磁性元件32包括至少一对磁极,每对磁极分别包括N极和S极,N极和S极沿动力输出部31的圆周方向间隔分布,该磁性元件的每个磁极(N极或S极)通过所述霍尔传感器时,该磁极与霍尔传感器相互作用而产生一个电平信号,通过霍尔传感器与磁极组合设置,检测精度相对较高。霍尔传感器包括主体部331和焊脚332,焊脚332与印刷电路板35电连接,焊脚332与印刷电路板35焊接固定,具体地,印刷电路板35形成有焊接部3511或连接导孔,焊脚332通过表面安装方式(SMT)与印刷电路板相焊接且电性连接,或者所述焊脚也可穿过印刷电路板的连接导孔,通过穿孔安装方式与印刷电路板相焊接且电性连接。

本实施例中,所述流量控制装置的采用步进电机,磁性元件为磁环或柱状磁体,磁性元件包括2个N极和2个S极,步进电机的动力输出部31为转轴状设置,也可称之为电机输出轴,向外伸出步进电机的外壳,磁性元件与动力输出部进行组装,磁性元件包括4个磁极并沿动力输出部的圆周排布。霍尔传感器位于磁性元件的外围并靠近磁性元件设置,当磁性元件随着电机的动力输出部旋转时,磁性元件的N极和S极交替经过霍尔传感器,霍尔传感器会产生周期性的反馈信号,该反馈信号为方波,经过霍尔传感器的磁性元件的磁极变化一次,从N极变化到S极或者从S极运行到N极,产生一个反馈信号,即反馈信号从低电平向高电平变化或者从低电平向高电平变化,当步进电机运行一圈,即磁性元件转动一圈,会产生4个反馈信号,霍尔传感器对应一个磁极的经过的时间为反馈信号的运行持续时间。控制单元采集上述反馈信号,并通过反馈信号的状态来判断步进电机的运行状态,步进电机的运行状态至少包括步进电机正常运行状态、步进电机堵转状态。

流量控制装置包括传动系统44,动力输出部31具有蜗杆传动部311,蜗杆传动部311和/或磁性元件32与所述动力输出部31一体形成;或者,蜗杆传动部311和/或磁性元件32以同轴方式套装在动力输出部31上,动力输出部31具有安装部312,该安装部312与所述磁性元件32相组装,该磁性元件32具有与安装部相配合的安装孔321,所述安装部312穿过所述安装孔,蜗杆传动部311为筒状设置且套装在动力输出部外周侧。蜗杆传动部311与传动系统44形成啮合机构,动力输出部31通过传动系统驱动可动阀件,可动阀件对应转动一工作角度,磁性元件32每发生一个磁极变化,检测元件33对应产生一个电平信号。具体地,该传动系统44具体为齿轮传动系,将步进电机的驱动力传递到可动阀件21,本实施方式该磁性元件为磁环状或柱状磁体设置,步进电机的动力输出部具有安装轴部313,蜗杆传动部311与所述传动系统形成啮合机构,所述安装轴部313插入所述安装孔321,蜗杆传动部311与安装轴部313相组装,或者蜗杆传动部311与安装轴部313也可一体形成。

磁环32的每一磁极通过霍尔传感器时,都会产生一个电平信号,流量控制装置100的位置检测精度s通过霍尔传感器可检测到的可动阀件转动角度a来表达,即就是可动阀件转动多少角度能够被霍尔传感器检测到,位置检测精度s包括两个影响参数:所述传动系的传动比i、磁环的极数M,那么位置检测精度s的表达公式为s=360/i/m,比如传动比i数值范围为312,磁环的极数M为2-10,当磁环极数不变、传动比i设置参数减小或增加,位置检测精度s对应增大或减小,结合这些参数,所述流量控制装置的检测精度等于小于两度(2°),进一步可优化至1°,具体地小于0.57度且大于0.14度。

以四极磁环为例,齿轮传动系的传动比i为312,磁环的每一磁极通过霍尔传感器时,都会产生一个电平信号,那么步进电机每运动一圈(360°),可动阀件转动角度为360°/312=1.15°,霍尔传感器产生4个电平信号,齿轮传动系的加工精度大致相同时,霍尔传感器能够检测到的所述传动输出部或可动阀件的位置检测精度为:360°/4/312=0.29°,即霍尔传感器产生电平信号对应的磁环极数是1极(90°)时,对应可动阀件的运动角度为0.29°。也即可动阀件每运动0.29°,霍尔传感器对印刷电路板控制单元反馈一个电平信号,即可动阀件每产生0.29°位置变化就会被检测到;再以六极磁环为例,霍尔传感器能够检测到的所述传动输出部或可动阀件的位置检测精度为:360°/6/312=0.19°,当然其他实施方式中,磁环极数也可以为8~10,比如八极磁环,霍尔传感器的位置检测精度为:360°/8/312=0.14°;每个电平信号对应的磁环极数是1极时,对应于最终控制的可动阀件的运动角度为0.14°-0.57°,那么可动阀件每运动0.14°-0.57°,霍尔传感器会对应产生一个电平信号,从而可动阀件每产生两度或不到两度的位置变化就会被检测到,通过霍尔传感器与安装到步进电机输出轴周侧的磁环互相作用,可大幅提升对可动阀件的位置检测精度较高。

所述检测元件33与所述磁性元件32的外周侧之间具有间距,尤其是检测元件33的主体部331与所述磁性元件32之间设置间距,该间距小于5mm,该传感器的主体部位于印刷电路板与电机输出轴之间的区域,有效利用元件相互之间的空间位置且对原有结构的影响较小,有利于节省成本;具体地在磁性元件的径向方向,磁性元件32的外周至检测元件33顶侧之间具有距离L,该距离L取值大于等于2mm小于等于3mm,这样既降低印刷电路板与电机输出轴的整体高度尺寸,同时又可相对提升检测元件33的灵敏度。

具体地,参见图10至图12,流量控制方案正常工作时,步进电机运行过程中,传感器对应磁环的磁极自N极的一端转动到N极和S极的交界处,对应的反馈信号为低电平,随着步进电机的运行,传感器对应磁环的磁极自N极向S极变化,反馈信号跳变为高电平,步进电机继续运行,传感器对应磁环磁极自S极转动到N极和S极的交界处,反馈信号持续保持高电平,随着步进电机的运行,传感器对应磁环磁极自S极向N极变化,反馈信号跳变为低电平,如此往复运行,磁环转动一圈,产生4个反馈信号,将每个反馈信号运行持续时间设定为正常工作脉冲时间宽度T;当流量控制方案发生堵转时,通常磁环不转动,因此反馈信号会一直保持当前的状态,持续高电平或低电平的时间t1超过设定正常脉冲时间T,控制方案中可定义该设定正常脉冲时间T的两倍或者其他倍数作为与工作脉冲时间t1进行比较的设定对比上限。

本发明还提供能够控制流量控制装置的控制系统,该控制系统至少包括:

磁性元件32,能够与所述流量控制装置的动力输出部31同步进行圆周运动,该磁性元件包括至少一对磁极,每对磁极包括N极和S极,N极和S极沿所述动力输出部31的圆周方向间隔分布,当所述磁性元件圆周运动时,所述磁极依次通过所述检测元件的感应区域;

检测元件33,能够与所述磁性元件的磁极相互作用,而检测到反馈信号,具体地该反馈信号为高低电平信号或脉冲信号或其他周期性变化信号;

控制单元34,设置有设定对比上限,根据检测到的反馈信号与设定对比上限进行比较,判断所述动力输出部是否处于正常工作状态,并控制该动力输出部进行调整,当所述流量控制装置的可动阀件产生堵转时,磁环不做运动,无法产生脉冲,检测电位不再发生变化,此时可判断异常,具体地,当反馈信号为高低电平信号/脉冲信号或其他周期性变化信号,且反馈信号的时间宽度大于所述对比上限,可判断可动阀件工况发生异常,比如堵转,可控制动力输出部31进行调整;比如霍尔传感器检测到的反馈信号所对应的实际工作脉冲时间宽度t1大于两倍正常脉冲时间T,此时判断为工况异常、发生堵转。

请再参见图12,本发明还提供一种控制系统的控制方法,所述控制系统包括步进电机、控制单元以及传感器,所述步进电机的动力输出部安装有磁环,所述磁环包括多个磁极,所述控制方法包括以下步骤:

S1、所述步进电机运行,所述磁环进行转动(圆周运动);

S2、所述传感器感应所述磁环的磁极变化并形成反馈信号;

S3、所述控制单元实时采集所述反馈信号并得到反馈信号的运行持续时间;

S4、所述控制单元根据采集到的每个反馈信号的运行持续时间判断所述步进电机是否发生堵转,如果是,发出堵转报警信号,如果否,判断所述步进电机为正常工作,继续进行S2,并循环工作。

其中S4中,所述控制单元预存有设定时段T,所述控制单元判断每个反馈信号的运行持续时间是否大于2倍所述设定时段,如果是,判断所述流量控制方案发生堵转,所述控制单元发出堵转报警信号。

流量控制装置100可应用在新能源汽车的暖通空调、电池冷却或者电池加热系统,具体地涉及所述流量控制装置的可动阀件运动位置检测和堵转检测,检测元件采用霍尔传感器和磁环相配合,检测元件与电机的动力输出部同步运动,且安装较为简便,能够有效地提高位置检测的精度,进一步利用所述传动系统的传动比的变化,可动阀件位置检测的精度进一步提高,可减少磁环的磁极极数、减小磁环外径,可相对减小磁环体积。

需要说明的是:以上实施例仅用于说明本发明而并非限制本发明所描述的技术方案,尽管本说明书参照上述的实施例对本发明已进行了详细的说明,但是,本领域的普通技术人员应当理解,所属技术领域的技术人员仍然可以对本发明进行修改或者等同替换,而一切不脱离本发明的精神和范围的技术方案及其改进,均应涵盖在本发明的权利要求范围内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1