一种控制地下水位平衡的试验装置的制作方法

文档序号:12249860阅读:418来源:国知局
一种控制地下水位平衡的试验装置的制作方法

本实用新型属于地下水位控制技术领域,涉及一种控制地下水位平衡的试验装置。



背景技术:

地下水位较浅的地区,地下水补给是作物需水量的重要组成,某些情况下可达作物需水量15%~95%;灌溉条件下,深层渗漏量亦可达作物需水量10%左右甚至更高。因而,在农作物有关需水量的试验中,地下水位变化是水量平衡计算中不可缺少的一项,但实际中,田间地下水位变化较为复杂,测定困难。为了定量地确定地下水位变化对作物需水过程的影响,并便于试验操作和简化水量平衡计算,需要在恒定的地下水位条件下研究作物需水规律。

传统恒定地下水位的方法是利用管道人工补排水来恒定地下水位,精度较低,且工作强度大,因此需要设计一种自动化程度高而且控制准确的地下水位动态平衡系统。



技术实现要素:

本实用新型的目的是提供一种控制地下水位平衡的试验装置,用于使试验土体的地下水位维持恒定,便于对作物的需水规律进行研究。

本实用新型所采用的技术方案是,一种控制地下水位平衡的试验装置,包括预埋在试验土体下部反滤层内的渗水管网,渗水管网包括至少两根平行设置的支管a,支管a的一端封闭,支管a的另一端端口与支管b连通,支管b上设有接口,接口通过四通接头分别连接供水系统、排水系统及液位传感器,供水系统与排水系统均与控制器连接,液位传感器与控制器均连接在上位机上;支管a的管壁上均匀排布有透水孔。

本实用新型的特点还在于,

其中供水系统包括供水管a,供水管a的一端通过四通接头与接口连接,供水管a的另一端连接在供水蠕动泵上,供水管a上设有电动阀a,供水蠕动泵上还连接供水管b的一端,供水管b的另一端连接蓄水箱,供水管b上设有电动阀b,电动阀a、电动阀b及供水蠕动泵均与控制器连接。

其中排水系统包括排水管a,排水管a的一端通过四通接头与接口连接,排水管a的另一端连接排水蠕动泵,排水蠕动泵还连接有排水管b,排水管a上设有电动阀c,电动阀c和排水蠕动泵均与控制器连接。

其中透水孔设置在支管a的上表面管壁上。

其中透水孔的孔径为1mm~3mm。

其中透水孔上设有尼龙纱网或不锈钢纱网。

其中控制器的型号为FK-1C。

其中液位传感器采用的型号为CYG1101。

本实用新型的有益效果是,本实用新型提出的自动控制地下水位系统利用上位机自动控制蠕动泵对试验土体内的水补给和排出,以解决之前水位变化难控制、工作强度大的问题,且本装置结构简单易操作。

附图说明

图1是本实用新型一种控制地下水位平衡的试验装置的结构示意图;

图2是本实用新型一种控制地下水位平衡的试验装置中渗水管网的俯视图。

图中,1.支管a,2.供水管a,3.供水管b,4.排水管a,5.排水管b,6.电动阀a,7.电动阀b,8.电动阀c,9.液位传感器,10.供水蠕动泵,11.排水蠕动泵,12.蓄水箱,13.上位机,14.控制器,15.试验土体,16.反滤层,17.透水孔,18.容器,19.支管b,20.接口。

具体实施方式

下面结合附图和具体实施方式对本实用新型进行详细说明。

本实用新型一种控制地下水位平衡的试验装置,结构如图1所示,包括预埋在试验土体15下部反滤层16内的渗水管网,试验土体15装在容器18内,如图2所示,渗水管网包括至少两根(水平)平行设置的支管a1,支管a1的一端封闭,支管a1的另一端端口与支管b19连通(支管b19的管壁上分布有与支管a1数量相同的管接头,支管a1通过管接头与支管b19的内部连通),支管b19的中间位置设有接口20(支管a1与支管b19预埋在反滤层16内,接口20位于容器18的外部),接口20通过四通接头分别连接供水管a2的一端、排水管a4的一端及液位传感器9(即四通接头的四个端口分别连接接口20、供水管a2的一端、排水管a4的一端及液位传感器9),供水管a2的另一端连接供水蠕动泵10,供水蠕动泵10上还连接供水管b3的一端,供水管b3的另一端连接蓄水箱12,供水管a2上设有电动阀a6,供水管b3上设有电动阀b7;排水管a4的另一端连接排水蠕动泵11,排水蠕动泵11上还连接有排水管b5,排水管a4上设有电动阀c8。

其中支管a1的管壁上均匀排布有透水孔17,透水孔17设置在支管a1的上表面管壁上,透水孔17的孔径为1mm~3mm,透水孔17上还包裹有尼龙纱网或不锈钢纱网,尼龙纱网或不锈钢纱网主要为了防止沙粒从透水孔17进入支管a1内部,将整个试验装置的管道堵塞。

电动阀a6、电动阀b7、电动阀c8、供水蠕动泵10及排水蠕动泵11均与控制器14连接,控制器14与液位传感器9均连接上位机13。

其中控制器14的型号为FK-1C,FK-1C型控制器是以时间控制定量分配的控制器,具有多种工作方式、掉电记忆、时间精准、外部控制的功能。

FK-1C型控制器的技术指标如下:

时间设定范围:0~99.99s(工作时间和间歇时间单独调整);

时间分辨率:0.01s;

技术设定范围:正计数0~999次,倒计数999~0次。

外控计算范围:0~999999,循环计数。

其中液位传感器9采用的型号为CYG1101。

本实用新型一种控制地下水位平衡的试验装置的工作原理为,将试验土体15装在容器18内,在试验土体15上种上作物之后,在上位机13上设定试验土体15的地下水位控制范围,液位传感器9实时监测试验土体15的地下水位高度,并将液位信息传输到上位机13中实时显示,当液位传感器9监测到试验土体15的地下水位低于预先设定的地下水位范围下限时,上位机13通过控制器14打开供水蠕动泵10、电动阀a6、电动阀b7,供水蠕动泵10从蓄水箱12中抽水,蓄水箱12中的水依次流经水管c3、水管b2及水管a1向试验土体15内定量补水,补水完成后,上位机13通过控制器14关闭供水蠕动泵10、电动阀a6、电动阀b7;当液位传感器9监测到试验土体15的地下水位高于设定的地下水位范围上限时,上位机13通过控制器14控制排水蠕动泵11及电动阀c8打开,排水蠕动泵11将试验土体内多余的水分通过排水管5排出;排水过程结束后,上位机13通过控制器14控制排水蠕动泵11及电动阀c8关闭;如此反复对试验土体15内部的地下水进行补给和排放,使试验土体15内部的地下水位维持在恒定状态,从而进一步对作物的需水规律进行研究。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1