本发明涉及在使操作部旋转时能够产生与操作方向相反方向的阻力矩及与操作方向相同方向的牵入转矩的输入装置。
背景技术:
专利文献1中记载了有关具有磁场响应材料的制动器的发明。该制动器为,轴以旋转自如的方式支承于外壳,与轴一起旋转的转子被设置于外壳的第1室内。在第1室中设置有磁场响应材料和磁场产生器。磁场响应材料根据磁场的强度,流动性发生变化。在磁场产生器未产生磁场时,磁场响应材料的粘性或剪切流动阻力低下,轴和转子变得容易旋转,在通过磁场产生器产生磁场时,磁场响应材料的粘性或剪切流动阻力变大,对轴和转子施加制动。
专利文献2中记载了有关手动输入装置的发明。该手动输入装置具有操作部件、与操作部件一起旋转的托架轴及在马达的输出轴上设置的编码器。在托架轴上固定有托架,在托架上以旋转自如的方式支承有多个行星齿轮,在马达的输出轴上固定有太阳齿轮,在太阳齿轮的周围啮合有行星齿轮。在用手操作使操作部件旋转而使编码器动作时,从马达对托架轴赋予与操作方向相同方向或相反的方向的旋转力,能够对操作操作部件的手赋予阻力感、加速感。
专利文献1:日本特开2005-507061号公报
专利文献2:日本特开2003-50639号公报
专利文献1所记载的制动器,能够通过磁场响应材料的作用对转子赋予制动力,但无法对转子提供旋转力,因此难以对操作者赋予多样的操作感触。
专利文献2所记载的手动输入装置,通过对托架轴赋予马达的动力,能够对操作操作部件的手赋予阻力感、加速感。然而,为了适当地对手赋予阻力感、加速感,马达的控制变得复杂,通过切换马达的旋转方向而产生不必要的振动的情况也是存在的。另外,为了使操作部件在停止状态下不活动,在停止中也需要对马达通电,消耗电力也变大。
技术实现要素:
本发明解决上述以往的课题,目的在于,提供能够以稳定的状态对旋转体赋予适当的阻力感和牵入感的输入装置。
本发明的输入装置,设置有固定部、以旋转自如的方式支承于上述固定部的旋转体及检测上述旋转体的旋转的旋转检测部,所述输入装置的特征在于,
设置有对上述旋转体施加制动力的制动施加部、及对上述旋转体施加转矩的转矩施加部,
上述制动施加部具有设置于上述旋转体的旋转板、介于上述固定部与上述旋转板的间隙的磁性粘性流体及对上述磁性粘性流体赋予磁场的制动施加线圈,
上述转矩施加部具有对上述旋转体施加旋转转矩的转矩施加线圈,
设置有控制对上述制动施加线圈和上述转矩施加线圈赋予的电流的控制部。
本发明的输入装置,构成为,在上述转矩施加部,在上述旋转体和上述固定部中的一方设置有磁铁,在另一方设置有至少2相的转矩施加线圈,通过由上述转矩施加线圈感应出的磁场,对上述旋转体施加旋转转矩。
在上述构成的输入装置中,
在上述控制部设置有:
分割角度设定部,将上述旋转体的一圈旋转划分为多个分割角度;
转矩设定部,控制对上述转矩施加线圈赋予的电流,在各个上述分割角度内设定对上述旋转体赋予的旋转转矩;及
制动设定部,控制对上述制动施加线圈赋予的电流,在上述分割角度的边界对上述旋转板赋予制动力。
本发明的输入装置,通过控制对上述转矩施加线圈赋予的电流,在各个上述分割角度内,对上述旋转体,赋予与对上述旋转体赋予的旋转力的作用方向相反方向的阻力矩、和与上述旋转力的作用方向相同方向的牵入转矩。
另外,通过上述控制部,能够变更上述旋转体的各个旋转角度下的上述阻力矩的大小、及各个上述旋转角度下的上述牵入转矩的大小。
并且,通过上述分割角度设定部,也能够变更上述分割角度的分割数。
本发明的输入装置可以为,通过上述转矩施加部,上述旋转体的一圈旋转内的分割角度被固定而设定。
在上述构成的输入装置中,在上述转矩施加部设置有与上述旋转体对置的磁轭,上述旋转体与上述磁轭的对置部在上述旋转体的旋转方向上隔开间隔地设定在多个部位,设置有将上述磁轭和上述旋转体中的一方磁化的上述转矩施加线圈。
并且,优选的是,本发明的输入装置,当在上述分割角度的边界对上述旋转板赋予制动力时,对上述转矩施加线圈的通电停止。
发明的效果
本发明的输入装置,通过设置利用了磁性粘性流体的制动施加部及通过磁场来产生旋转转矩的转矩施加部,从而能够对操作操作部的手赋予适度的阻力感、牵入感。另外,通过对旋转体赋予转矩和制动力,能够容易地完成转矩施加部的通电控制,还能够防止被施加转矩的操作体的振动。
另外,在通过制动施加部赋予制动时使转矩施加部停止,从而能够降低消耗电力。
附图说明
图1是表示本发明的第1实施方式的输入装置的整体构造的剖视图。
图2是表示第1实施方式的输入装置的主要部分的立体图。
图3是表示第1实施方式的输入装置的旋转体上所设置的转子(磁铁)的立体图。
图4是表示第1实施方式的输入装置的电路构成的框图。
图5a是表示使用了图4所示的设定值输入部的制动力和旋转转矩的设定操作的说明图。
图5b是表示图5a中设定的反馈力的变化的波形图。
图6a是表示使用了图4所示的设定值输入部的制动力和旋转转矩的设定操作的说明图。
图6b是表示图6a中设定的反馈力的变化的波形图。
图7a及图7b是表示第1实施方式的输入装置中旋转转矩的设定的一例的说明图。
图8是表示本发明的第2实施方式的输入装置的整体构造的剖视图。
图9是表示图8所示的输入装置的旋转体的一部分的局部俯视图。
图10a及图10b是表示第2实施方式的输入装置中旋转转矩的设定的一例的说明图。
符号说明
1:输入装置
2:固定部
10:旋转体
11:操作轴
12:检测板
13:转子
14:旋转板
20:旋转检测部
22:旋转检测元件
30:转矩施加部
36a:a相的转矩施加线圈
36b:b相的转矩施加线圈
40:制动施加部
44:间隙
45:磁性粘性流体
47:制动施加线圈
50:控制部
51:运算部
101:输入装置
102:固定部
113:转子
113a:对置部
114:固定磁轭
114a:对置部
115:转矩施加线圈
o:旋转中心线
具体实施方式
图1至图3中示出了本发明的第1实施方式的输入装置1的构造。
如图1所示,输入装置1具有固定部2、及以旋转自如的方式支承于固定部2的旋转体10。旋转体10具有操作轴11。图1中示出了操作轴11的旋转中心线o。旋转体10为,检测板12、转子(磁铁)13及旋转板14固定于操作轴11。
在固定部2的内部设置有多个径向轴承4、5、6,通过径向轴承4、5、6以旋转自如的方式支承旋转体10的操作轴11。在固定部2的下部设置有推力轴承7,通过推力轴承7,支承在旋转体的操作轴11的下端所设置的枢轴部15。
在输入装置1中设置有旋转检测部20、转矩施加部30及制动施加部40。
在旋转检测部20中,上述检测板12位于成为固定部2的一部分的中间壳体21的内部空间。在固定部2固定有与检测板12对置的旋转检测元件22,构成非接触式的旋转检测装置。旋转检测元件22是光学检测器、磁性检测器。在为光学检测器的情况下,在检测板12上,沿着以旋转中心线o为中心的圆周方向交替形成有反射部和非反射部。或者,交替形成有光透射部和光非透射部。在为磁性检测器的情况下,检测板12具有磁铁。不管怎样,通过旋转检测部20检测旋转体10的旋转角度。
在转矩施加部30,上部支承板32和下部支承板33固定于成为部2的一部分的上部壳体31。在上部支承板32上固定有上部线圈支承体34,在下部支承板33上固定有下部线圈支承体35。上述径向轴承4被固定于上部线圈支承体34,上述径向轴承5被固定于下部线圈支承体35。
在上部线圈支承体34和下部线圈支承体35上,固定有a相的转矩施加线圈36a和b相的转矩施加线圈36b。如图2中也示出那样,a相的转矩施加线圈36a和b相的转矩施加线圈36b,以导线避开上部线圈支承体34和下部线圈支承体35、并以多匝环绕转子13的周围的方式卷绕成矩形状。对a相的转矩施加线圈36a和b相的转矩施加线圈36b,赋予不同相位的控制电流。
如图3所示,转子(磁铁)13是圆柱形状,磁化区域以180度为边界被划分为2个区域,一个磁化区域,上面被磁化为n极且下面被磁化为s极,另一个磁化区域,上面被磁化为s极且下面被磁化为n极。从转子13的2个磁化区域发出的磁束b,横断a相的转矩施加线圈36a和b相的转矩施加线圈36b。
如图1所示,制动施加部40,是下部磁轭41与上部磁轭42组合而构成的。下部磁轭41和上部磁轭42,用ni-fe合金等的软磁性材料形成。在下部磁轭41和上部磁轭42的外周,安装有用金属板形成的间隔圈43。通过间隔圈43决定下部磁轭41与上部磁轭42的图示上下方向的相对位置,下部磁轭41与上部磁轭42之间的间隙44的上下的间隔被设定为均匀。另外,通过间隔圈43,从外周侧封堵上述间隙44。下部磁轭41与上部磁轭42的相对位置通过间隔圈43而被决定的状态下,下部磁轭41和上部磁轭42使用外装壳等来互相固定。
下部磁轭41与上部磁轭42被组合时,在间隙44的内部收纳设置在旋转体10上的旋转板14。另外,对下部磁轭41的上面与旋转板14之间、及上部磁轭42的下面与转板14之间,供给磁性粘性流体45。磁性粘性流体45是在硅油等油剂的内部混入了ni-fe合金粉等磁性粉或磁性粒的物质。
如图1所示,在上部磁轭42上固定有上述推力轴承6,在下部磁轭41上固定有上述推力轴承7。并且,在间隙44与推力轴承6之间、且在上部磁轭42与操作轴11之间夹着o形圈46,限制间隙44内的磁性粘性流体45朝向推力轴承6流出。
如图1所示,在下部磁轭41的内部设置有作为磁场产生部的制动施加线圈47。在制动施加线圈47中,导线以旋转中心线o为中心在圆周方向上卷绕多重。
图4中示出了第1实施方式的输入装置1的电路构成。
在输入装置1中设置有控制部50。控制部50将cpu、存储器作为主体而构成。在控制部50中,根据从存储器读出的程序进行各种处理。在图4中,进行通过控制部50执行的各种处理的处理部被示为框图。
在控制部50中设置有运算部51,运算部51具有转矩设定部52和制动设定部53。控制部50中设置有分割角度设定部54。在输入装置1中设置有设定值输入部55。设定值输入部55具有键盘等输入装置和显示器。通过操作设定值输入部55,对运算部51和分割角度设定部54输入设定值。
在控制部50中,设置有当前角度检测部56,来自在旋转检测部20上所设置的旋转检测元件22的检测输出通过a/d变换部57被变换为数字值后提供给当前角度检测部56。
在控制部50中设置有a相调制部58a和b相调制部58b。根据运算部51的运算结果,通过a相调制部58a控制pwm通电部59a,与该控制值对应的占空比的控制电流被提供给a相的转矩施加线圈36a。同样地,根据运算部51的运算结果,通过b相调制部58b控制pwm通电部59b,与该控制值对应的占空比的控制电流被提供给b相的转矩施加线圈36b。
在控制部50中设置有制动调制部61。根据运算部51的运算结果,通过制动调制部61控制pwm通电部62,与该控制值对应的占空比的控制电流被提供给制动施加线圈47。
接着,对上述输入装置1的动作进行说明。
图5a表示设定值输入部55的显示器上所显示的输入画面的一例。设定值的输入使用设定值输入部55上所设置的键盘装置、其他的输入装置进行。
如图5a所示,在设定值输入部55的显示器上显示分割角度设定画面65。通过从设定值输入部55对控制部50的分割角度设定部54输入设定值,设定使操作轴11旋转时的感触控制的1个单位即分割角度φ。分割角度φ能够自由地设定,在图5a所示的分割角度设定画面65的显示例中,旋转体10的一圈旋转被12分割,分割角度φ被设定为30度这一均匀的角度。一圈旋转内的分割数能够自由地选择6、24等。另外能够将多个分割角度φ设定为不同的角度而不是均匀的角度。并且,分割角度可以仅仅是1个角度。即,可以是旋转体10能够仅在1个分割角度的范围内转动。
如图5a所示,在设定值输入部55的显示器上显示有制动设定画面66和转矩设定画面67。在制动设定画面66中,通过分割角度设定部54设定的1个分割角度φ(图5a所示的例子中“φ=30度”)被进一步细分为31个角度,并能够设定为使31分割的各个角度位置处的制动力的大小可变。同样地,在转矩设定画面67中,通过分割角度设定部54设定的1个分割角度(φ=30度)被进一步细分为31个角度,并能够设定为使31分割的各个角度位置处的旋转转矩的方向和大小可变。
图5a所示的设定例示出了,在用手保持被固定于操作轴11的操作部并进行使旋转体10向顺时针方向(cw)旋转的操作时,在1个分割角度φ内设定的制动力和旋转转矩的变化。
在图5a所示的制动设定画面66中,在1个分割角度φ(=30度)的开始点和终点,制动力被设定为规定的大小,在开始点与终点之间的中间期间,制动力被设定为几乎为零或非常弱的力。制动设定画面66中显示的各角度位置处的制动力的设定值,从图4所示的制动设定部53提供给制动调制部61,通过制动调制部61控制pwm通电部62,来决定对制动施加线圈47提供的脉冲状的控制电流的占空比。
其结果是,在1个分割角度φ的开始点和终点对制动施加线圈47提供大的电流,通过用制动施加线圈47感应的制动磁场,被填充到间隙44内的磁性粘性流体45内的磁性粉成为凝集构造、桥接构造,旋转体10的旋转阻力增大。在分割角度φ的开始点与终点之间的中间期间,对制动施加线圈47几乎不通电,不会感应出制动磁场。在该期间,磁性粘性流体45的粘度不会变高,对旋转体10提供的制动力变小。
在图5a所示的转矩设定画面67中,设定为,从1个分割角度φ(=30度)的开始点朝向终点,旋转转矩的方向和大小沿着大致正弦曲线而变化。在分割角度φ的开始点和终点,对旋转体10提供的旋转转矩几乎为零。在从分割角度φ的开始点到分割角度φ的中间点的期间,对旋转体10提供逆时针方向(ccw)的旋转转矩(阻力矩),该旋转转矩的大小也逐渐变化。在从分割角度φ的中间点到分割角度φ的终点的期间,对旋转体10提供顺时针方向(cw)的旋转转矩(牵入转矩),并设定为其大小逐渐变化。
如图5a中的制动设定画面66所示那样设定制动力,并如转矩设定画面67所示那样设定旋转转矩时,对保持操作部并欲使旋转体10向顺时针方向旋转的手的操作反馈力,如图5b所示那样变化。在图5b中示出了,在用手操作操作部使旋转体10向顺时针方向(cw)旋转360度期间对手提供的反馈力的变化。
在使旋转体10向顺时针方向旋转时,在分割角度φ的开始点,通过制动施加部40对旋转体10作用了制动力,因此旋转阻力变高。在使操作部稍微旋转时制动力被解除,但从分割角度φ的开始点一直到中间点,被提供向逆时针方向(ccw)的阻力矩,一超过中间点,被提供向顺时针方向(cw)的牵入转矩,在分割角度φ的终点再次作用制动力。其结果是,在使旋转体10旋转360度期间,按每个分割角度φ,制动力间歇性地起作用,在分割角度φ内阻力矩和牵入转矩起作用,能够获得如使具有机械的触点的旋转开关旋转那样的操作感触。
在图6a和图6b中示出了与图5a和图5b不同的设定例。
在图6a所示的设定例中,旋转的分割角度φ是与图5a的设定相同的30度。图6a所示的制动设定画面66中显示的制动力的变化的设定与图5a相同。
但是,图6a所示的转矩设定画面67中显示的旋转转矩的设定与图5a不同。在图6a的设定例中,在分割角度φ的开始点和终点,旋转转矩几乎为零。从分割角度φ的开始点一直到中间点,设定相同大小的逆时针方向(ccw)的旋转转矩(阻力矩),从中间点一直到分割角度φ的终点,设定相同大小的顺时针方向(cw)的旋转转矩(牵入转矩)。
其结果是,在使操作部向顺时针方向旋转360时对手提供的反馈力,表示出图6b所示的变化。在图5b中,分割角度φ内的阻力矩和牵入转矩的大小被设定为接近正弦曲线的变化,因此在分割角度φ内手所感觉到的阻力感和牵入感柔性地变化。与此相对,在图6b中,通过分割角度φ内的从阻力矩向牵入转矩的切换,转矩急剧地变化,因此阻力感和牵入感以敏锐的变化的方式被提供给使旋转体10旋转的手。
这里,对转矩施加部30中对转子(磁铁)13提供的旋转转矩的设定进行说明。
图7a的纵轴表示对a相的转矩施加线圈36a和b相的转矩施加线圈36b提供的电流的变化。如图4所示,对各转矩施加线圈36a、36b,提供通过pwm通电部59a、59b调制了占空比的脉冲电流,但在图7a中为了便于说明示出了脉冲电流的积分值。即,以如同对各转矩施加线圈36a、36b作用有直流电流那样的方式示出。
在图7a中,将横轴假定为时间的推移,如果与时间推移对应地将相位彼此相差90度的电流提供给2个转矩施加线圈36a、36b,则能够对转子(磁铁)13提供旋转力。然而,转矩施加部30的目的不是使转子13旋转,而是在用手使之旋转时对旋转体10提供阻力矩和牵入转矩。
因此,在图7a中横轴被定义为转子13的旋转角度。若在转子13沿着图7a的横轴移动到任一个当前角度时,将在该当前位置用纵轴表示的被固定的电流值持续提供给各转矩施加线圈36a、36b,则能够使转子13在该当前角度停止。例如,在转子13的当前角度为45度时,a相的转矩施加线圈36a和b相的转矩施加线圈36b中持续流通大致70%的电流时,能够使转子13停止在45度的当前角度的位置。
另外,如图7a中被标注纵向延伸的虚线那样,将转子13一直旋转到180度的位置作为当前角度时,此时,若a相的转矩施加线圈36a中继续流通负向100%的电流,并使对b相的转矩施加线圈36b的电流为零,则能够使转子13停止在180度的当前角度的位置。此时,作用于转子13的旋转转矩为零。
因此,基于图7a所示的波形,在比当前角度更靠正向侧或负向侧设定相对控制角度,转子13位于当前角度时,将与上述相对控制角度对应的控制电流提供给各转矩施加线圈36a、36b,从而能够对位于当前角度的转子13提供旋转转矩。
例如,转子13的当前角度为180度时,将相对控制角度设定为正向90度,将在图7a中在“+90度”的位置用虚线所示的电流值提供给各转矩施加线圈36a、36b。即,使对a相的转矩施加线圈36a提供的电流为零,并使对b相的转矩施加线圈36b提供的电流为负向100%。据此,能够对于位于当前角度180度的位置的转子13提供顺时针方向(cw)成为最大值的牵入转矩。
另外,转子13的当前角度为180度时,将相对控制角度设定为负向90度,将图7a中在“-90度”的位置用虚线表示的电流值提供给各转矩施加线圈36a、36b。即,在将对a相的转矩施加线圈36a提供的电流设为零并将对b相的转矩施加线圈36b提供的电流设为正向100%时,能够对当前角度180度的转子13提供逆时针方向(ccw)成为最大值的阻力矩。
无论转子13的当前角度在哪个位置,这都是同样的,无论转子13位于哪个当前角度,通过以该当前角度为基准将相对控制角度设定为正向90度,并将正向90度的电流提供给各转矩施加线圈36a、36b,能够将顺时针方向(cw)的旋转转矩即牵入转矩设定为最大(100%)。另外,通过将相对控制角度设定为负向90度,并将负向90度的电流提供给各转矩施加线圈36a、36b,能够将逆时针方向(ccw)的旋转转矩即阻力矩设定为最大(100%)。
在图6b所示的转矩设定画面67中的旋转转矩的设定例中,在分割角度φ的前半部分,阻力矩为100%的状态持续。这意味着,无论转子13的当前角度为何种角度,相对控制角度都被设定为负向90度。另外,在分割角度φ的后半部分,牵入转矩为100%的状态持续,但这意味着,无论转子的当前角度为何种角度,相对控制角度都被设定为正向90度。
在图5b所示的转矩设定画面67中,在分割角度φ的范围内被31分割的各个当前角度的位置,逆时针方向(ccw)的旋转转矩即阻力矩的大小和顺时针方向(cw)的旋转转矩即牵入转矩的大小,与正弦曲线近似并逐渐变化。为了如此使各当前角度的旋转转矩的大小变化,在转矩设定部52中进行如下的运算处理。
作为第1运算处理,在图4所示的转矩设定部52,对于将相对控制角度设定为正向90度的100%的牵入转矩,乘以预先决定的系数,并如图5a的转矩设定画面67所示那样,求出时时刻刻变化的牵入转矩的设定值。另外,对于将相对控制角度设定为负向90度的100%的阻力矩也乘以预先决定的系数,并如图5a的转矩设定画面67所示那样,求出时时刻刻变化的阻力矩的设定值。
作为第2运算处理,使用图7b所示的转矩变化表。图7b中,横轴表示相对控制角度,纵轴表示转矩比。转矩比,用将相对控制角度设为±90度时的成为最大值的旋转转矩被设为“1”时的旋转转矩的比率表示。如果在各个当前角度应该设定的旋转转矩已确定,则使用图7b所示的表,选择与该旋转转矩的大小对应的相对控制角度,并将与该相对控制角度对应的电流提供给各转矩施加线圈36a、36b,由此能够设定旋转转矩。
图8和图9中示出了本发明的第2实施方式的输入装置101。在第2实施方式中,对发挥与第1实施方式相同的功能的部分标注相同的符号并省略详细的说明。
图8所示的输入装置101,旋转体10以旋转自如的方式支承于固定部102。旋转体10具有操作轴11、固定于作为旋转体10的操作轴11的旋转板14、固定于作为旋转体10的操作轴11的转子113。
输入装置101中设置有转矩施加部30和制动施加部40。另外,旋转检测部20的图示省略。制动施加部40的构造与图1所示的输入装置1相同,在下部磁轭41与上部磁轭42的间隙44内设置有旋转板14和磁性粘性流体45。另外在下部磁轭41设置有制动施加线圈47。
在转矩施加部30中,作为旋转体10的操作轴11上固定有转子113。如图9所示,在转子113的外周面,在圆周方向上以一定的分割角度φ突出形成有对置部113a。转子113用磁性材料形成,但不是磁铁。在固定部102设置有固定磁轭114。在固定磁轭的内周部,在圆周方向上也以一定的分割角度φ突出形成有对置部114a。转子113的对置部113a和固定磁轭114的对置部114a形成为成为相同的分割角度φ。
固定磁轭114用磁性材料形成,固定磁轭114上保持有转矩施加线圈115。
接着,对第2实施方式的输入装置101的动作进行说明。
图10a中,横轴表示旋转体10的旋转角度,纵轴表示对制动施加部40的制动施加线圈47的电流进行了控制时对旋转板14提供的制动力(制动转矩)的变化。仅仅制动施加部40的控制,能够使制动力(制动转矩)变化,对使操作体旋转的手提供阻力感的变化,但无法对旋转体10提供旋转转矩。
因此,在对转矩施加部30上所设置的转矩施加线圈115通电时,固定磁轭114被磁化。图9所示的转子113的对置部113a与固定磁轭114的对置部114a对置时,转子113稳定。然而,在从该稳定位置起使旋转体10向顺时针方向旋转时,如图10b所示,产生与在分割角度φ的前半部分φ1使之旋转的方向相反方向的阻力矩,在后半部分φ2产生与旋转方向相同方向的牵入转矩。
因此,在对转矩施加线圈115通电时,控制对制动施加线圈47的通电,由此能够使得欲使操作体旋转的手感觉到适度的制动阻力感以及阻力矩和牵入转矩。通过将基于转矩施加部30的旋转转矩的设定与基于制动施加部40的制动力的设定组合,能够实现多样的操作感触,能够抑制旋转体10的不必要的振动的产生等。另外,在对置部113a与对置部114a对置的稳定状态下,赋予基于制动施加部40的制动力,从而能够使对转矩施加线圈115的通电停止,能够降低消耗电力。
另外,在上述实施方式中,在转矩施加部,在固定部设置有转矩施加线圈36a、36b、115,在第1实施方式中在旋转体10上设置有磁铁,但也可以与之相反,在旋转体上设置转矩施加线圈,在固定部设置磁铁等。