1.一种机械臂自适应轨迹跟踪控制方法,其特征在于该控制方法基于滑模观测器与神经网络辨识器建立,具体步骤包括:
步骤1:针对不确定的运动学部分,建立运动学不确定雅各比矩阵模型,设计了基于滑模观测器的不确定雅各比矩阵自适应补偿器,并证明其滑模面的收敛性;
步骤2:针对不确定的动力学部分,将动力学模型不确定项和外界干扰视为总不确定动力学,设计了基于rbf神经网络的不确定动力学模型辨识器,利用辨识出的函数估计动力学参数及外界干扰;
步骤3:设计一种新的基于rbf神经网络的鲁棒自适应控制器,并根据该控制器设计了优化的神经网络参数自适应律,最后对其稳定性进行分析。
2.根据权利要求1所述的机械臂自适应轨迹跟踪控制方法,其特征在于:步骤1中所述运动学不确定雅各比矩阵模型建立为:根据机械臂名义雅各比矩阵,将不确定的雅各比矩阵设计为δj(q);假设所述不确定的雅各比矩阵是有界的,即||δj(q)||≤b1,其中b1∈r是正常数,代表有界上限。
3.根据权利要求2所述的机械臂自适应轨迹跟踪控制方法,其特征在于:所述的基于滑模观测器的不确定雅各比矩阵自适应补偿器的设计为:在考虑名义雅各比矩阵的基础上加入终端滑模函数
4.根据权利要求3所述的机械臂自适应轨迹跟踪控制方法,其特征在于:所述滑模面的收敛性证明表述为:选择李雅普诺夫函数:
5.根据权利要求4所述的机械臂自适应轨迹跟踪控制方法,其特征在于:步骤2中针对所述的总不确定动力学,根据机械臂的动力学方程,在名义动力学模型的基础上将其不确定项和外界扰动视为总扰动h(q);所述的基于rbf神经网络的不确定动力学模型辨识器的设计为:将不确定模型分为两部分利用神经网络辨识,即:
6.根据权利要求5所述的机械臂自适应轨迹跟踪控制方法,其特征在于:步骤3中所述基于rbf神经网络的鲁棒自适应控制器设计为:设xd为工作空间期望轨迹,定义任务空间跟踪误差为e1=xd-x,定义关节空间的滑动向量为
7.根据权利要求6所述的机械臂自适应轨迹跟踪控制方法,其特征在于,该控制方法还包括对控制器的稳定性分析证明,具体是选取李雅普诺夫函数: