电源模块、显示装置和供电的方法与流程

文档序号:32697245发布日期:2022-12-27 21:25阅读:79来源:国知局
电源模块、显示装置和供电的方法与流程
电源模块、显示装置和供电的方法
1.本技术要求于2021年6月25日提交到韩国知识产权局的第10-2021-0083110号韩国专利申请的优先权,所述韩国专利申请的公开通过引用全部包含于此。
技术领域
2.在此描述的本公开的实施例涉及一种电源模块和包括电源模块的电子装置,更具体地,涉及一种出于使系统负载消耗的输送的电力的效率最大化的目的来调节电压的电平的电源模块和包括电源模块的电子装置。


背景技术:

3.如今,由于电子装置执行的操作是多种多样的,因此在电子装置中流过的负载电流的范围也是多种多样的。例如,随着显示装置的分辨率和扫描速率增大,显示装置以各种分辨率和扫描速率进行操作,因此,显示装置覆盖的负载电流的范围也扩大。这样,近来,已经开发了向电子装置施加足够大的电压使得电子装置以最大负载电流进行操作的供电装置。然而,因为在电子装置中流过最大电流的情况是暂时的并且仅在限制性的条件下发生,所以针对这样的情况总是向电子装置施加大电压的方式是非常浪费和低效的。


技术实现要素:

4.本公开的实施例提供了一种电源模块和包括电源模块的电子装置,电源模块通过监测流到电源模块的电流的量来调节输入电压的电平,使得电子装置根据系统负载所需的功率以最大效率消耗功率。
5.根据实施例,一种电源模块包括:第一电源模块,基于第一输入电压生成第一输出电流;第二电源模块,基于第二输入电压生成第二输出电压,基于第二输出电压生成第二输出电流,并且在第一输入电压的电平小于参考电压的电平时生成第二输出电流;以及电压控制器,基于与在所述电源模块中流过的电流有关的电流信息生成用于调节第一输入电压的电平和第二输入电压的电平中的至少一个的反馈信号。
6.根据实施例,一种供电的方法包括:基于第一输入电压生成第一输出电流;将第一输入电压的电平与参考电压的电平进行比较;基于将第一输入电压的电平与参考电压的电平进行比较的比较结果生成比较信号;生成与比较信号的累积信息对应的结果码;基于结果码和第二输入电压生成第二输出电流;基于第一输出电流和第二输出电流向外部装置供电;感测第一输出电流和第二输出电流中的至少一个以生成电流信息;基于电流信息生成用于调节第一输入电压和第二输入电压中的至少一个的电平的反馈信号;以及基于反馈信号来调节和输出第一输入电压和第二输入电压中的所述至少一个的电平。
7.根据实施例,一种显示装置包括:显示面板,显示图像;电源管理集成电路,生成第一输入电压和第二输入电压;以及显示驱动电路,生成多条栅极线上的栅极信号,并且生成多条数据线上的数据电压。显示驱动电路包括:电源模块,基于第一输入电压和第二输入电压中的至少一个来提供显示面板所需的电力。电源模块基于第一输入电压生成第一电流,
当发生第一输入电压的下降时,基于第一输入电压和第二输入电压生成第二电流,并且监测第一电流和第二电流,以基于第一电流和第二电流中的至少一个来生成用于调节第一输入电压和第二输入电压中的至少一个的电平的反馈信号。
附图说明
8.通过参照附图对本公开的实施例的详细描述,本公开的以上目的和特征以及其它目的和特征将变得清楚。
9.图1是示出根据本公开的示例性实施例的电源模块和包括电源模块的电子装置的配置图。
10.图2a和图2b是详细示出根据本公开的示例性实施例的电源模块的配置图。
11.图3a和图3b是详细示出图2a和图2b中示出的模拟ldo稳压器1120的配置图。
12.图4是详细示出图2a和图2b中示出的数字ldo稳压器1220的配置图。
13.图5是用于描述根据本公开的示例性实施例的数字ldo稳压器的操作的时序图。
14.图6a和图6b是示出根据本公开的示例性实施例的以内部供电方式操作的电源模块的配置图。
15.图7a和图7b是示出根据本公开的示例性实施例的以外部供电方式操作的电源模块的配置图。
16.图8是示出根据本公开的示例性实施例的以内部供电方式和外部供电方式操作的电源模块的配置图。
17.图9是示出根据本公开的另一示例性实施例的电子装置的配置图。
18.图10是示出根据本公开的示例性实施例的每个场景的负载电流的曲线图。
19.图11是示出根据本公开的示例性实施例的电流采样方式的曲线图。
20.图12a和图12b是示出根据本公开的示例性实施例的功率被降低多少的曲线图。
21.图13是示出根据本公开的示例性实施例的电子装置的通信结构的配置图。
22.图14是示出根据本公开的示例性实施例的显示装置的配置图。
23.图15是示出根据本公开的示例性实施例的电子装置的操作方法的流程图。
具体实施方式
24.下面,将以本领域技术人员容易地理解本公开的程度详细和清楚地描述本公开的实施例。
25.图1是示出根据本公开的实施例的电子装置的配置图。根据本公开的示例性实施例的电子装置可包括电源管理集成电路(pmic)10、电源模块1000和系统负载20。根据本公开的实施例的电子装置可包括能够被供电的各种电子装置(诸如,智能电话、智能平板、可穿戴装置、数码相机、电视装置、显示器、膝上型计算机、黑匣子和机器人)。
26.电源管理集成电路10可基于放置在电子装置内部或外部的电池来提供各种电平的电压。根据本公开的实施例的电源管理集成电路10可提供第一输入电压vin1和第二输入电压vin2。例如,第一输入电压vin1和第二输入电压vin2可作为单独的电压源被提供。电源管理集成电路10可基于反馈信号fs来调节第一输入电压vin1的电平。因此,第一输入电压vin1的电平可通过反馈信号fs增大或减小。然而,电源管理集成电路10不限于此,并且电源
管理集成电路10还可调节第二输入电压vin2的电平。
27.电源模块1000可包括第一电源模块1100、第二电源模块1200和电压控制器1300。电源模块1000可基于第一输入电压vin1和第二输入电压vin2生成输出电压vout。在仅使用第一输入电压vin1将足够的功率提供给系统负载20的情况下,电源模块1000可通过仅使用第一输入电压vin1生成输出电压vout。相比之下,在随着由系统负载20消耗的负载电流的电平增大而未能仅使用第一输入电压vin1将足够的功率提供给系统负载20的情况下,电源模块1000可通过一起使用第二输入电压vin2和第一输入电压vin1生成输出电压vout。
28.另外,电源模块1000可监测流到系统负载20的负载电流。在此,负载电流可以是可变的。例如,电源模块1000可测量基于第一输入电压vin1的电流的电平和基于第二输入电压vin2的电流的电平。根据本公开的实施例的电源模块1000可基于测量的电流电平生成反馈信号fs。此处,反馈信号fs可包括指示是增大、减小还是保持第一输入电压vin1的电平的信息。
29.第一电源模块1100可基于第一输入电压vin1生成第一输出电压vout1。例如,为了稳定地供应电力,第一电源模块1100可对第一输入电压vin1进行升高、降低和/或反相。例如,第一电源模块1100可去除第一输入电压vin1的噪声。另外,第一电源模块1100可将第一输入电压vin1提供给第二电源模块1200。尽管未在图1中示出,但是第一电源模块1100可将第一输出电压vout1提供给第二电源模块1200。
30.根据本公开的实施例的第一电源模块1100可生成第一电流信息id1。这里,第一电流信息id1可包括与基于第一输入电压vin1和/或第一输出电压vout1的电流(在下文中,被称为“第一电流”)有关的信息。例如,第一电流信息id1可包括第一电流的电平和/或通过以规律间隔(或周期)对第一电流进行采样而获得的值的集合。将参照图2a和图2b详细描述第一电源模块1100的配置和操作。
31.第二电源模块1200可基于第一输入电压vin1和第二输入电压vin2生成第二输出电压vout2。例如,当系统负载20需要给定电平或更高电平的功率时,在第一输出电压vout1处可能发生电压降。在这种情况下,为了补偿第一输出电压vout1的电压降,第二电源模块1200可生成第二输出电压vout2。例如,第二电源模块1200可基于第一输入电压vin1确定附加电流的电平,并且可基于第二输入电压vin2生成与附加电流的电平对应的第二输出电压vout2。尽管未在图1中示出,但是第二电源模块1200可基于第一输出电压vout1和第二输入电压vin2生成第二输出电压vout2。在这种情况下,第二电源模块1200可基于第一输出电压vout1来确定附加电流的电平。
32.根据本公开的实施例的第二电源模块1200可生成第二电流信息id2。这里,第二电流信息id2可包括与基于第二输入电压vin2和/或第二输出电压vout2的电流(在下文中,被称为“第二电流”)有关的信息。例如,第二电流信息id2可包括第二电流的电平和/或通过以规律间隔(或周期)对第二电流进行采样而获得的值的集合。将参照图2a和图2b详细描述第二电源模块1200的配置和操作。
33.电压控制器1300可被配置为监测第一电流和/或第二电流。根据本公开的实施例的电压控制器1300可从第一电源模块1100和/或第二电源模块1200接收第一电流信息id1和/或第二电流信息id2。根据本公开的实施例,可根据用户的请求或制造商的设置来确定接收第一电流信息id1和第二电流信息id2的时间段以及接收第一电流信息id1和第二电流
信息id2的周期。此外,接收第一电流信息id1和第二电流信息id2的时间段以及接收第一电流信息id1和第二电流信息id2的周期可以不是固定的,并且可被确定以便被实时地调节。例如,当第一电流信息id1和第二电流信息id2仅包括模拟电流信号时,电压控制器1300可以以规律间隔(或周期性地)对第一电流和第二电流进行采样。
34.另外,电压控制器1300可基于第一电流信息id1和第二电流信息id2中的至少一个生成反馈信号fs。例如,电压控制器1300可基于第一电流信息id1和第二电流信息id2中的至少一个来计算第一输入电压vin1的电平,以便与系统负载20所需的功率对应。这里,将参照下面的等式1至等式4描述根据本公开的实施例的第一输入电压vin1的电平。
35.[等式1]
[0036]
il=i1+i2
[0037]
[等式2]
[0038]
p=i1
×
vin1+i2
×
vin2
[0039]
[等式3]
[0040]
vin1≤vin2
[0041]
[等式4]
[0042]
pmin=il
×
vin1
[0043]
参照等式1至等式4,“il”被定义为流到系统负载20的总电流的电平。“i1”被定义为第一电源模块1100供应给系统负载20的电流的电平,“i2”被定义为第二电源模块1200供应给系统负载20的电流的电平。“p”被定义为系统负载20消耗的功率的总量。“pmin”被定义为系统负载20消耗的功率的总量的最小值。
[0044]
参照等式1和等式2,流到系统负载20的电流的总量由i1和i2的和确定,并且系统负载20消耗的功率的总量由i1与第一输入电压vin1的乘积以及i2与第二输入电压vin2的乘积确定。根据本公开的实施例,在等式3中,假设第一输入电压vin1的电平小于或等于第二输入电压vin2的电平。然而,本公开不限于此。例如,第一输入电压vin1的电平可大于第二输入电压vin2的电平。为了方便起见,将在假设等式3有效的情况下给出描述。当第一输入电压vin1的电平总是小于或等于第二输入电压vin2的电平时,可基于等式4来确定系统负载20消耗的功率的总量的最小值pmin。
[0045]
因此,根据符合等式3有效的假设的本公开的实施例,可通过调整(或调节)第一输入电压vin1的电平来最小化pmin。在一个实施例中,电压控制器1300可基于第二电流信息id2来计算第一输入电压vin1的电平。在这种情况下,电压控制器1300可周期性地计算第二电流的电平的增量或减量。在一个实施例中,电压控制器1300可基于第二电流信息id2,通过将当前时段中的电流的电平与下一时段中的电流的电平进行比较来计算在第二电源模块1200中流过的电流的电平的增量或减量。例如,当第二电流的电平的增量超过第一阈值时,电压控制器1300可生成用于增大电源管理集成电路10将输出的第一输入电压vin1的电平的反馈信号fs。例如,当第二电流的电平的减量超过第二阈值时,电压控制器1300可生成用于减小电源管理集成电路10将输出的第一输入电压vin1的电平的反馈信号fs。例如,当第二电流的电平的增量小于或等于第一阈值并且第二电流的电平的减量小于或等于第二阈值时,电压控制器1300可生成用于保持电源管理集成电路10将输出的第一输入电压vin1的电平以便与电流的电平相同的反馈信号fs。根据本公开的实施例,可通过用户的请求或
制造商的设置来改变第一输入电压vin1的电平被调节的时段。
[0046]
电压控制器1300可生成包括与第一输入电压vin1的电平有关的信息的反馈信号fs。电源管理集成电路10可被提供有反馈信号fs。电源管理集成电路10可增大、减小或保持第一输入电压vin1的电平,以便与反馈信号fs指示的第一输入电压vin1的电平对应,并且可将第一输入电压vin1输出到第一电源模块1100。与图1中示出的示例不同,根据本公开的实施例的电压控制器1300可位于系统负载20中。在一个实施例中,电压控制器1300可确定采样被执行的周期、反馈信号fs被生成的周期、第一输入电压vin1的电平增大或减小的周期以及第一电流信息id1和第二电流信息id2中的至少一个被接收的周期中的至少一者。
[0047]
系统负载20可基于输出电压vout进行操作(即,可消耗功率)。系统负载20可用包括在电子装置中的芯片或模块(例如,通信电路、存储器、应用处理器、存储装置、显示驱动器集成电路(ddi)和输入/输出(i/o)接口)来不同地实现。然而,本公开不限于此。例如,系统负载20可包括需要电力的任何系统或子装置。在图1中示出了系统负载20仅被供应输出电压vout的示例,但是本公开不限于此。例如,除了输出电压vout之外,系统负载20可被供应来自任何其它电压源的任何其它电压。
[0048]
图2a和图2b是详细示出根据本公开的实施例的电源模块的配置图。为了方便起见,参照图1给出的描述将被省略以避免冗余。
[0049]
参照图2a,第一电源模块1100可包括至少一个电流传感器1110和模拟低压差(low dropout,ldo)稳压器1120。尽管未在图2a中示出,但是根据本公开的实施例的第一电源模块1100还可包括用于信号放大的放大器或用于信号衰减的衰减器。尽管未在图2a中示出,但是第一电源模块1100和第二电源模块1200中的每个还可包括用于调节输入电压的开关稳压器(或“开关电源”)。
[0050]
同时,第一电源模块1100可根据用户的请求或制造商的设置,以包括内部供电模式和外部供电模式的至少两种模式生成电压。可根据系统负载20消耗的功率的范围来选择供电方式。例如,根据内部供电模式,内部供电方式的第一输入电压(在下文中,被称为“第一内部输入电压”)vin1_int可从电源管理集成电路10被接收,并且具有特定电平的内部供电模式的第一输出电压(在下文中,被称为“第一内部输出电压”)vout1_int可通过模拟ldo稳压器1120被生成。例如,根据外部供电模式,外部供电模式的第一输入电压(在下文中,被称为“第一外部输入电压”)vin1_ext可从电源管理集成电路10被接收,并且外部供电模式的第一输出电压(在下文中,被称为“第一外部输出电压”)vout1_int可通过线被输出。同时,第一外部输入电压vin1_ext的电平可能由于寄生电阻而减小。因此,第一外部输出电压vout1_ext的电平可小于第一外部输入电压vin1_ext的电平。
[0051]
电流传感器1110可基于第一内部输入电压vin1_int或第一外部输入电压vin1_ext生成第一电流信息id1。同时地或可选地,尽管未在图2a中示出,但是电流传感器1110可基于第一内部输出电压vout1_int或第一外部输出电压vout1_ext生成第一电流信息id1。例如,电流传感器1110可感测(或检测)通过从电源管理集成电路10输出的电压生成的电流。电流传感器1110可周期性地对感测的电流的电平进行采样。将参照图11描述电流传感器1110如何对电流进行采样。电流传感器1110可生成包括周期性采样的电流值的第一电流信息id1。
[0052]
模拟ldo稳压器1120可基于第一内部输入电压vin1_int生成第一内部输出电压
vout1_int。例如,模拟ldo稳压器1120可调节第一内部输入电压vin1_int以便具有给定的电平。模拟ldo稳压器1120可生成作为调节第一内部输入电压vin1_int的电平的结果的第一内部输出电压vout1_int。将参照图3a和图3b详细描述模拟ldo稳压器1120的配置和操作。
[0053]
第二电源模块1200可包括至少一个电流传感器1210和数字低压差(ldo)稳压器1220。电流传感器1210可基于第二输出电压vout2生成第二电流信息id2。同时地或可选地,尽管未在图2a中示出,但是电流传感器1210可基于第二输入电压vin2生成第二电流信息id2。电流传感器1210生成第二电流信息id2的操作类似于电流传感器1110生成第一电流信息id1的操作,因此,附加的描述将被省略以避免冗余。
[0054]
数字ldo稳压器1220可包括比较器1221、移位寄存器1222和晶体管阵列1223。
[0055]
比较器1221可基于第一输入电压vin1生成比较信号cs。这里,根据第一电源模块1100的供电模式,第一输入电压vin1可以是第一内部输入电压vin1_int或第一外部输入电压vin1_ext。例如,当第一电源模块1100在内部供电模式下操作时,第一输入电压vin1可以是第一内部输入电压vin1_int。例如,当第一电源模块1100在外部供电模式下操作时,第一输入电压vin1可以是第一外部输入电压vin1_ext。另外,比较器1221可将第一输入电压vin1与参考电压进行比较。例如,比较器1221可生成基于将参考电压与第一输入电压vin1进行比较的结果的比较信号cs。这里,参考电压是用于确定是否需要通过第二电源模块1200的附加电力供应的电压。将参照图4详细描述比较器1221的配置和操作。
[0056]
移位寄存器1222可基于比较信号cs生成结果码“q”。这里,结果码“q”可以是与第二电源模块1200输出的电流的电平对应的二进制码。例如,在移位寄存器1222是5位移位寄存器的情况下,移位寄存器1222可生成5位结果码“q”(例如,“00000”)。根据本公开的实施例的移位寄存器1222可由位于第二电源模块1200内部或外部的单独的控制器(未示出)控制。尽管未在图2a中示出,但是根据本公开的实施例的移位寄存器1222可接收用于重置结果码“q”的信号。将参照图4和图5详细描述移位寄存器1222的配置和操作。
[0057]
晶体管阵列1223可基于结果码“q”和第二输入电压vin2生成第二输出电压vout2。晶体管阵列1223可包括多个晶体管。例如,晶体管阵列1223可通过导通或截止晶体管来调节电流的电平。这里,可通过结果码“q”来确定是导通还是截止晶体管。将参照图4详细描述晶体管阵列1223的配置和操作。
[0058]
电压控制器1300可基于第一电流信息id1和第二电流信息id2中的至少一个生成反馈信号fs。例如,电压控制器1300可根据第一电流信息id1确定在第一电源模块1100中流过的电流的电平的变化,或者可根据第二电流信息id2确定在第二电源模块1200中流过的电流的电平的变化。电压控制器1300可基于由此确定的电流的电平的变化生成反馈信号fs,反馈信号fs用于调节电源管理集成电路10将输出的第一内部输入电压vin1_int、第一外部输入电压vin1_ext和第二输入电压vin2中的至少一个的电平。
[0059]
图2b是示出根据本公开的实施例的电源模块的电流感测模式的配置图。为了方便起见,参照图2a给出的描述将被省略以避免冗余。
[0060]
根据本公开的实施例,第一电源模块1100和第二电源模块1200中的每个可省略用于感测电流的单独的电流传感器。在一个实施例中,移位寄存器1222可生成第二电流信息id2。这里,第二电流信息id2可对应于结果码“q”。也就是说,因为结果码“q”对应于第二电
源模块1200输出的电流的电平,所以第二电流信息id2可对应于与第二电源模块1200输出的电流的电平有关的信息。
[0061]
电压控制器1300可基于第二电流信息id2生成反馈信号fs。电压控制器1300可从移位寄存器1222接收与结果码“q”对应的第二电流信息id2。这里,电压控制器1300接收第二电流信息id2的周期可根据用户的请求或制造商的设置而改变。电压控制器1300可根据结果码“q”计算第二电源模块1200输出的电流的电平的增量或减量。
[0062]
图3a和图3b是详细示出图2a和图2b中示出的模拟ldo稳压器1120的配置图。参照图3a,模拟ldo稳压器1120可包括第一误差运算放大器(op-amp)op1、通道晶体管(pass transistor)tr、第一电阻器r1和第二电阻器r2。模拟ldo稳压器1120可基于第一内部输入电压vin1_int生成第一内部输出电压vout1_int。
[0063]
第一误差op-amp op1可包括(+)输入端子、(-)输入端子、正电源端子、负电源端子和输出端子。第一参考电压vref1可被施加到第一误差op-amp op1的(+)输入端子,反馈电压vfb可被施加到第一误差op-amp op1的(-)输入端子。第一内部输入电压vin1_int可被施加到第一误差op-amp op1的正电源端子,接地节点可与第一误差op-amp op1的负电源端子连接。根据本公开的实施例,尽管未在图3a中示出,但是电荷泵(未示出)还可在第一节点n1与正电源端子之间被设置。根据本公开的实施例,与图3a中示出的示例不同,单独的偏置电压可被施加到正电源端子。
[0064]
另外,第一误差op-amp op1可将第一参考电压vref1与反馈电压vfb进行比较。第一误差op-amp op1可对第一参考电压vref1与反馈电压vfb之间的差进行放大,以通过第一误差op-amp op1的输出端子输出栅极电压vg。
[0065]
通道晶体管tr可包括第一端(例如,源极)、第二端(例如,漏极)和第三端(例如,栅极),第一内部输入电压vin1_int被输入到第一端,第一内部输出电压vout1_int从第二端被输出,第三端与第一误差op-amp op1的输出端子连接。例如,通道晶体管tr可以是p沟道金属氧化物半导体(pmos)晶体管,但是本公开不限于此。例如,通道晶体管tr可用能够执行切换操作和/或放大操作的任何晶体管来实现。可基于输入到通道晶体管tr的第三端的栅极电压vg来驱动通道晶体管tr。
[0066]
第一电阻器r1可连接在第二节点n2与第三节点n3之间,第二电阻器r2可连接在第三节点n3与接地节点之间。第一电阻器r1和第二电阻器r2可对与通道晶体管tr的第二端连接的第二节点n2的电压(例如,第一内部输出电压vout1_int)进行分压,使得反馈电压vfb被传送到第一误差op-amp op1的(-)输入端子。第一电阻器r1的值和第二电阻器r2的值可根据用户的请求或制造商的设置而变化。然而,本公开不限于此。例如,第一电阻器r1和第二电阻器r2中的每个可具有固定值。因此,可实现反馈回路,在该反馈回路中第一误差op-amp op1接收反馈电压vfb以将栅极电压vg输出到其输出端子,并且通道晶体管tr的第二端的第一内部输出电压vout1_int被分压。另外,模拟ldo稳压器1120可将第一内部输入电压vin1_int传送到复用器1400(参照图2b)。
[0067]
然而,本公开不限于此。模拟ldo稳压器1120可将存在于其中的线的电压传送到复用器1400。例如,如图3b中所示,模拟ldo稳压器1120可将第一内部输出电压vout1_int传送到复用器1400。下面,为了方便起见,如图3a中所示,在模拟ldo稳压器1120将第一内部输入电压vin1_int传送到复用器1400的假设下给出描述。然而,本公开不限于此。
[0068]
图4是详细示出图2a和图2b中示出的数字ldo稳压器1220的配置图。为了方便起见,参照图2a和图2b给出的描述将被省略以避免冗余。
[0069]
比较器1221可包括第二误差op-amp op2。例如,第二误差op-amp op2可作为模数转换器(adc)进行操作。第二误差op-amp op2可与时钟信号clk同步地进行操作。第二误差op-amp op2可包括(+)输入端子、(-)输入端子和输出端子。第二参考电压vref2可被施加到第二误差op-amp op2的(+)输入端子,第一输入电压vin1可被施加到第二误差op-amp op2的(-)输入端子。第二误差op-amp op2可通过其输出端子输出比较信号cs。
[0070]
第二误差op-amp op2可将第二参考电压vref2的电平与第一输入电压vin1的电平进行比较。例如,当第二参考电压vref2的电平高于第一输入电压vin1的电平时,第二误差op-amp op2可生成指示逻辑高的值(例如,“1”)的比较信号cs。相反,当第二参考电压vref2的电平不高于第一输入电压vin1的电平时,第二误差op-amp op2可生成指示逻辑低的值(例如,“0”)的比较信号cs。
[0071]
移位寄存器1222可基于比较信号cs生成n位结果码q[n:1]。这里,“n”是1或更大的自然数。例如,在移位寄存器1222是5位移位寄存器的情况下,移位寄存器1222可生成5位结果码q[5:1]。移位寄存器1222可与时钟信号clk同步地进行操作。移位寄存器1222可周期性地检查比较信号cs,并且可生成结果码q[n:1],当比较信号cs是“1”时,结果码q[n:1]的值增大,当比较信号cs是“0”时,结果码q[n:1]的值减小。例如,当n位结果码q[n:1]是5位结果码q[5:1]时,5位结果码q[5:1]可以是“00000、00001、00010、00011、
……
、11111”。将参照图5详细描述移位寄存器1222生成n位结果码q[n:1]的操作。
[0072]
尽管未在图4中示出,但是在一个实施例中,移位寄存器1222可生成第二电流信息id2。这里,第二电流信息id2可对应于n位结果码q[n:1]。
[0073]
晶体管阵列1223可输出第二输出电流iout2。晶体管阵列1223可包括“n”个晶体管。这里,“n”是大于0的任何自然数。在一个实施例中,“n”可大于或等于“n”。“n”个晶体管中的每个可包括第一端(例如,源极)、第二端(例如,漏极)和第三端(例如,栅极),第二输入电压vin2被输入到第一端,第二输出电压vout2从第二端输出,第三端与移位寄存器1222连接。例如,“n”个晶体管中的每个可以是p沟道金属氧化物半导体(pmos)晶体管,但是本公开不限于此。例如,“n”个晶体管中的每个可用能够执行切换操作和/或放大操作的任何晶体管来实现。
[0074]“n”个晶体管(例如,第一晶体管tr1至第n晶体管trn)可基于n位结果码q[n:1]分别导通或截止。因此,第二输出电流iout2的电平可根据晶体管阵列1223的第一晶体管tr1至第n晶体管trn的导通/截止组合而变化。在一个实施例中,第二输出电流iout2的电平可随着晶体管阵列1223的第一晶体管tr1至第n晶体管trn之中的导通的晶体管的数量增加而增大,并且随着晶体管阵列1223的第一晶体管tr1至第n晶体管trn之中的导通的晶体管的数量减少而减小。例如,当n位结果码q[n:1]是5位结果码q[5:1]时,第一晶体管tr1至第五晶体管tr5可由5位结果码q[5:1]控制。在晶体管阵列1223中存在第六晶体管tr6至第n晶体管trn的情况下,第六晶体管tr6至第n晶体管trn可保持截止状态。图4中示出晶体管阵列1223包括pmos晶体管的示例。在这种情况下,当位的值是“0”时,晶体管可导通;当位的值是“1”时,晶体管可截止。然而,本公开不限于此。例如,可通过反相器(未示出)改变位值与晶体管的导通或截止之间的对应关系。
[0075]
例如,当5位结果码q[5:1]是“11000”时,构成5位结果码q[5:1]的位可分别对应于第一晶体管tr1至第五晶体管tr5。分别对应于第一晶体管tr1至第五晶体管tr5的位可分别被输入到第一晶体管tr1至第五晶体管tr5的第三端。
[0076]
图5是用于描述根据本公开的实施例的数字ldo稳压器的操作的时序图。一起参照图4和图5,比较器1221和移位寄存器1222可与时钟信号clk同步地进行操作。比较器1221可与时钟信号clk同步地生成比较信号cs。移位寄存器1222可从比较器1221接收比较信号cs。移位寄存器1222可基于时钟信号clk和比较信号cs生成n位结果码q[n:1]。将在假设n位结果码q[n:1]是5位结果码q[5:1]的情况下参照图5给出描述。
[0077]
移位寄存器1222可基于时钟信号clk来检查比较信号cs的值,每个时段根据用户的请求或制造商的设置来设置。移位寄存器1222可通过根据如此检查的比较信号cs的值改变码值来生成5位结果码q[5:1]。例如,5位结果码q[5:1]的默认值可被设置为“11111”,但是本公开不限于此。因此,当5位结果码q[5:1]具有默认值“11111”时,晶体管阵列1223的所有晶体管(例如,tr1至trn)截止,并且第二输出电流iout2的电平是“0”。
[0078]
移位寄存器1222可与时钟信号clk同步地将5位结果码q[5:1]的位一个接一个地向右或向左移位。例如,在比较信号cs是“1”的情况下,移位寄存器1222执行1位左移操作。此外,q[5]是“0”。例如,假设移位寄存器1222在时段“t”输出“11111”的5位结果码q[5:1],移位寄存器1222可在时段“t+1”输出“11110”作为5位结果码q[5:1]。当比较信号cs再次被设置为“1”时,移位寄存器1222可在时段(t+2)输出“11100”作为5位结果码q[5:1]。
[0079]
相比之下,在比较信号cs是“0”的情况下,移位寄存器1222执行1位右移操作。例如,假设移位寄存器1222在时段“t”输出“11000”的5位结果码q[5:1],移位寄存器1222可在时段“t+1”输出“11100”作为5位结果码q[5:1]。当比较信号cs再次被设置为“0”时,移位寄存器1222可在时段(t+2)输出“11110”作为5位结果码q[5:1]。
[0080]
图6a和图6b是示出根据本公开的实施例的在内部供电模式下操作的电源模块的配置图。根据本公开的实施例,可在内部供电模式和外部供电模式中的至少一个中使用第一输入电压。参照图6a和图6b,电源模块2000可在内部供电模式下生成输出电压vout。为了方便起见,参照图1至图4给出的描述将被省略以避免冗余。
[0081]
图6a示出在内部供电模式下电源模块2000包括单独的电流传感器的实施例。参照图6a,第一电源模块2100可包括多个电流传感器2110_1和2110_2,第二电源模块2200可包括多个电流传感器2210_1和2210_2。除了多个电流传感器2110_1、2110_2、2210_1和2210_2之外,尽管未在图6a中示出,但是电流传感器可被设置在电源模块2000的内部线或外部线上。多个电流传感器2110_1、2110_2、2210_1和2210_2中的每个可感测流过线的电流。详细地,电流传感器2110_1可感测第一内部输入电流iin1_int。电流传感器2110_2可感测第一内部输出电流iout1_int。电流传感器2210_1可感测第二输入电流iin2。电流传感器2210_2可感测第二输出电流iout2。多个电流传感器2110_1、2110_2、2210_1和2210_2可基于感测的电流iin1_int、iout1_int、iin2和iout2将第一电流信息id1和第二电流信息id2提供给电压控制器2300。
[0082]
如在参照图1和图2a给出的描述中一样,电压控制器2300可基于第一电流信息id1和第二电流信息id2生成反馈信号fs。根据本公开的实施例,电压控制器2300可根据第二电流信息id2监测第二输出电流iout2的电平的增量或减量,并且可生成反馈信号fs,反馈信
号fs包括指示在下一时段是增大、减小还是保持第一内部输入电压vin1_int的电平的信息。电源管理集成电路10可基于反馈信号fs来调整(例如,增大、减小或保持)下一时段的第一内部输入电压vin1_int的电平。由此调整的第一内部输入电压vin1_int可被提供给第一电源模块2100。
[0083]
如在参照图3a和图3b给出的描述中一样,模拟ldo稳压器2120可生成第一内部输出电流iout1_int。数字ldo稳压器2220中的比较器2221可生成基于将第二参考电压vref2的电平与第一内部输入电压vin1_int的电平进行比较的结果的比较信号cs。如在参照图4给出的描述中一样,数字ldo稳压器2220可通过移位寄存器2222和晶体管阵列2223生成第二输出电流iout2。第一内部输出电流iout1_int和第二输出电流iout2可在输出节点nout处形成输出电流iout。因此,电源模块2000可提供输出电流iout。输出电流iout可提供系统负载20所需的负载电流il。可设置具有负载电容的负载电容器cl,以保持输出电压vout的电平。
[0084]
图6b示出移位寄存器2222生成第二电流信息id2的实施例。参照图6b,第一电源模块2100和第二电源模块2200可省略单独的电流传感器。为了方便起见,参照图6a给出的描述将被省略以避免冗余。根据本公开的实施例,移位寄存器2222可生成与n位结果码q[n:1]对应的第二电流信息id2。如在参照图1和图2b给出的描述中一样,电压控制器2300可基于第二电流信息id2生成反馈信号fs。
[0085]
将在假设n位结果码q[n:1]是5位结果码q[5:1]的情况下参照图6b与参照图5给出的描述一起给出描述。电压控制器2300可周期性地接收与5位结果码q[5:1]对应的第二电流信息id2。当5位结果码q[5:1]在时段“t”是“11111”并且在时段“t+1”是“11110”时,电压控制器2300可感测到第二电流的电平在时段“t”与“t+1”之间增大。因此,当第二电流的电平的增量超过第一阈值时,电压控制器2300可生成用于增大电源管理集成电路10将输出的第一输入电压vin1的电平的反馈信号fs。当5位结果码q[5:1]在时段“t”是“11100”并且在时段“t+1”是“11110”时,电压控制器2300可感测到第二电流的电平在时段“t”与“t+1”之间减小。因此,当第二电流的电平的减量超过第二阈值时,电压控制器2300可生成用于减小电源管理集成电路10将输出的第一输入电压vin1的电平的反馈信号fs。
[0086]
图7a和图7b是示出根据本公开的实施例的在外部供电模式下操作的电源模块的配置图。参照图7a和图7b,电源模块3000可在外部供电模式下生成输出电压vout。为了方便起见,参照图1至图4和图6a给出的描述将被省略以避免冗余。
[0087]
图7a示出在外部供电模式下电源模块3000包括单独的电流传感器的实施例。参照图7a,第一电源模块3100可包括电流传感器3110,第二电源模块3200可包括多个电流传感器3210_1和3210_2。除了多个电流传感器3110、3210_1和3210_2之外,尽管未在图7a中示出,但是电流传感器可被设置在电源模块3000的内部线或外部线上。多个电流传感器3110、3210_1和3210_2中的每个可感测流过线的电流。详细地,电流传感器3110可感测第一外部输入电流iin1_ext。电流传感器3210_1可感测第二输入电流iin2。电流传感器3210_2可感测第二输出电流iout2。多个电流传感器3110、3210_1和3210_2可基于感测的电流iin1_ext、iin2和iout2,将第一电流信息id1和第二电流信息id2提供给电压控制器3300。
[0088]
在第一电源模块3100在外部供电模式下操作的情况下,与内部供电模式不同,第一电源模块3100可不包括诸如模拟ldo稳压器的组件。也就是说,根据本公开的实施例的第
一电源模块3100可仅包括电流流过的线。因此,在图7a中,为了便于描述,第一外部输入电流iin1_ext和第一外部输出电流iout1_ext用不同的参考标号标记,但是引用流过同一条线的相同电流。
[0089]
数字ldo稳压器3220中的比较器3221可生成基于将第二参考电压vref2的电平与第一外部输入电压vin1_ext的电平进行比较的结果的比较信号cs。如在参照图4给出的描述中一样,数字ldo稳压器3220可通过移位寄存器3222和晶体管阵列3223生成第二输出电流iout2。第一外部输出电流iout1_ext和第二输出电流iout2可在输出节点nout处形成输出电流iout。
[0090]
图7b示出移位寄存器3222生成第二电流信息id2的实施例。参照图7b,第一电源模块3100和第二电源模块3200可省略单独的电流传感器。为了方便起见,参照图6a和图7a给出的描述将被省略以避免冗余。
[0091]
图8是示出根据本公开的实施例的在内部供电模式和外部供电模式下操作的电源模块的配置图。根据本公开的实施例,电源模块4000可在内部供电模式和外部供电模式下操作。与参照图6a、图6b、图7a和图7b描述的内部供电模式或外部供电模式的操作相关联的描述将被省略以避免冗余。
[0092]
电源模块4000还可包括复用器(mux)4400。复用器4400可接收第一内部输入电压vin1_int和第一外部输入电压vin1_ext。复用器4400可基于复用器控制信号mctr来选择第一内部输入电压vin1_int和第一外部输入电压vin1_ext中的一者。这里,尽管复用器控制信号mctr未被示出,但是复用器控制信号mctr可由位于电源模块4000内部或外部的单独的控制器(未示出)控制(或生成)。例如,控制器(未示出)可生成用于确定第一电源模块4100是在内部供电模式下还是在外部供电模式下操作的复用器控制信号mctr,以便与系统负载20所需的功率水平一致。因此,复用器4400可输出从第一内部输入电压vin1_int和第一外部输入电压vin1_ext中选择的一者。
[0093]
第一电源模块4100可输出第一输出电流iout1。这里,根据选择的供电模式,第一输出电流iout1可对应于第一内部输出电流iout1_int和第一外部输出电流iout1_ext中的一者。数字ldo稳压器4220可生成第二输出电流iout2。第二电源模块4200可输出第二输出电流iout2。因此,第一输出电流iout1和第二输出电流iout2可在输出节点nout处形成输出电流iout。电压控制器4300可基于多个第一电流信息id1和多个第二电流信息id2中的至少一个生成反馈信号fs。
[0094]
图9是示出根据本公开的另一实施例的电子装置的配置图。为了方便起见,参照图1给出的描述将被省略以避免冗余。
[0095]
电子装置可包括电源管理集成电路30、电源模块5000和系统负载40。根据本公开的实施例,电源模块5000可输出第一输出电压vout1和第二输出电压vout2。系统负载40可接收第一输出电压vout1和第二输出电压vout2,并且可内部地利用接收的电压vout1和vout2。第一输出电压vout1的电平可由电压控制器5300实时地调节。在系统负载40能够通过仅使用第一输出电压vout1来充分有效地消耗功率的情况下,第二输出电压vout2可不被提供。
[0096]
图10是示出根据本公开的实施例的每个场景的负载电流的曲线图。在图10中,x轴表示随时间的“n”个场景,y轴表示流到系统负载20(参照图1)的负载电流il的电平。在大多
数场景中,可在场景的通常范围内指定负载电流。然而,在第k场景中,最大负载电流il
max
可流到系统负载20。最大负载电流il
max
可具有显著超出场景的通常范围的电流。因此,将电压提供给系统负载20的电源管理集成电路10或电源模块1000应提供足够大的电平的电压以使系统负载20正常操作。
[0097]
然而,连续地将大电平的电压提供给系统负载20以应对不常见的最大负载电流il
max
在功耗方面可能是低效的。参照上面的等式1,负载电流il可由第一电流i1与第二电流i2的和确定。因此,电压控制器1300可通过监测第一电流i1和第二电流i2来感测负载电流il的变化。例如,在第k场景之前的场景(例如,第k-1场景)中,电压控制器1300可感测负载电流il的电平的增量。当负载电流il的电平的增量超过根据用户的请求或制造商的设置确定的第一阈值时,电压控制器1300可生成用于在下一时段中增大第一输入电压vin1的电平的反馈信号fs。相比之下,在第k场景之后的场景(例如,第k+1场景)中,电压控制器1300可感测负载电流il的电平的减量。当负载电流il的电平的减量超过根据用户的请求或制造商的设置确定的第二阈值时,电压控制器1300可生成用于在下一时段中减小第一输入电压vin1的电平的反馈信号fs。根据本公开的实施例,当第一输入电压vin1的电平实时地改变时,系统负载20可更高效地消耗功率。将参照图12a和图12b详细描述根据本公开的实施例的功率效率。
[0098]
图11是示出根据本公开的实施例的电流采样模式的曲线图。参照图11,电流传感器1110和1210(参照图1)中的每个可周期性地感测流过线的电流。电流传感器1110和1210中的每个感测的电流可由电流传感器1110和1210或电压控制器1300周期性地采样。图11的顶部图示出电流传感器1110和1210中的每个以模拟形式感测的电流的电平。图11的底部图示出通过由电流传感器1110和1210或电压控制器1300周期性地对模拟形式的电流电平进行采样而获得的值。根据本公开的实施例,感测周期和/或采样周期可根据用户的请求或制造商的设置而改变。
[0099]
图12a和图12b是示出根据本公开的实施例的功率被降低多少的曲线图。根据本公开的实施例,图12a示出与通过仅使用一个电压源向系统负载供电的情况相比功率被降低多少。图12b示出与未提供本公开的电压控制器的情况相比的功率降低。
[0100]
参照图1和图12a,根据本公开的实施例,与通过仅使用一个电压源向系统负载供电的情况相比(例如,与未提供本公开的第二电源模块的情况相比),功率可被降低。同时,x轴表示负载电流(il)的电平,y轴表示降低的功率。在图12a中,实线图(auto)示出根据本公开的实施例的功率降低。在假设电源模块1000不包括电压控制器1300的情况下,实线图(auto)之外的剩余曲线图被测量。虚线图(1.1v)示出在输入到第一电源模块的第一输入电压vin1的电平被固定为1.1v时的功率降低。点划线图(1.25v)示出在输入到第一电源模块的第一输入电压vin1的电平被固定为1.25v时的功率降低。双点划线图(1.4v)示出在输入到第一电源模块的第一输入电压vin1的电平被固定为1.4v时的功率降低。
[0101]
参照除实线图(auto)之外的剩余曲线图的趋势,当负载电流il的电平低时,降低的功率随着第一输入电压vin1的电平变得更低而变得更大。相比之下,当负载电流il的电平高时,降低的功率随着第一输入电压vin1的电平变得更高而变得更大。例如,当负载电流il的电平小于0.1a时,降低的功率在第一输入电压vin1的电平是1.1v时最大。当负载电流il的电平大于0.1a并且小于0.2a时,降低的功率在第一输入电压vin1的电平是1.25v时最
大。当负载电流il的电平大于0.2a时,降低的功率在第一输入电压vin1的电平是1.4v时最大。因此,当第一输入电压vin1的电平被固定时,在负载电流il的电平波动很大的情况下不能获得最佳的功率效率。
[0102]
参照图12a中的实线图(auto)的趋势,不管负载电流il如何,降低的功率总是等于或大于在第一输入电压vin1被固定时的降低的功率。因此,即使在负载电流il的波动很大的情况下,也可始终获得最佳的功率效率。
[0103]
图12b示出与第一输入电压vin1(参照图1)的电平被固定为1.4v(与图12a中的双点划线图对应)的情况相比的本公开的功率差。同时,x轴表示负载电流il的电平,y轴表示功率差。根据本公开的实施例,可基于负载电流il的电平的变化在每个给定时段实时地调节第一输入电压vin1的电平。例如,当负载电流il的电平低(例如,0.1a)时,第一输入电压vin1的电平可低于1.4v。因此,与第一输入电压vin1的电平被固定为1.4v的情况相比,本公开可始终获得最佳的功率效率。
[0104]
图13是示出根据本公开的实施例的电子装置的通信结构的配置图。电子装置可包括电源装置50、电源模块6000、应用处理器(ap)16、输入/输出接口62、存储器63、存储装置64、显示驱动器集成电路(ddi)65和通信电路块66。另外,电子装置还可包括需要电力的任何其它电路、模块或块。
[0105]
电源装置50可包括pmic控制器51、电源管理集成电路52和电池53。例如,电源装置50可以是单独的装置。pmic控制器51可基于电压控制器6300提供的反馈信号来调节电源管理集成电路52提供的电压的电平。pmic控制器51可位于电源管理集成电路52外部;然而,与图13的示例不同,pmic控制器51可被集成在电源管理集成电路52中。电池53可提供电力,使得电源管理集成电路52能够生成电压。
[0106]
电源模块6000可包括第一电源模块6100、第二电源模块6200和电压控制器6300。电压控制器6300可与pmic控制器51和/或电源管理集成电路52通信。电压控制器6300可向pmic控制器51和/或电源管理集成电路52请求电源模块6000所需的电压。根据本公开的实施例,电压控制器6300可位于电源模块6000中,但是本公开不限于此。例如,与图13的示例不同,电压控制器6300可位于应用处理器61、输入/输出接口62、存储器63、存储装置64、显示驱动器集成电路65和通信电路块66中的任何一个中。
[0107]
图14是示出根据本公开的实施例的显示装置的配置图。显示装置也可包括电源管理集成电路7000、显示驱动电路8000和显示面板9000。电源管理集成电路7000可生成第一输入电压vin1和第二输入电压vin2。
[0108]
显示驱动电路8000可包括电源模块8100、时序控制器8200、源极驱动集成电路(例如,源极ic)8300和栅极驱动集成电路(例如,栅极ic)8400。显示驱动电路8000可基于第一输入电压vin1和第二输入电压vin2中的至少一个提供显示面板9000所需的电力。电源模块8100可生成电压以便具有最佳的功率效率。例如,电源模块8100可生成模拟电源电压avdd以及栅极驱动电压vgh和vgl。电源模块8100可基于彼此不同的第一输入电压vin1和第二输入电压vin2生成输出电压vout(参照图1)(例如,模拟电源电压avdd以及栅极驱动电压vgh和vgl)。
[0109]
电源模块8100可基于第一输入电压vin1生成第一电流i1(参照等式1)。当第一输入电压vin1由于显示面板9000的功耗增加而下降时,电源模块8100可基于第一输入电压
vin1和第二输入电压vin2输出第二电流i2(参照等式1)。根据本公开的实施例,为了调节第一输入电压vin1的电平,电源模块8100可监测第一电流i1和/或第二电流i2。根据本公开的实施例,电源模块8100监测和/或采样第一电流i1和/或第二电流i2的周期可对应于显示面板9000显示图像的帧单位。然而,本公开不限于此。例如,可不考虑帧来确定周期。此外,根据本公开的实施例,电源模块8100调节第一输入电压vin1的电平的周期可对应于显示面板9000显示图像的帧单位。然而,本公开不限于此。例如,可不考虑帧来确定周期。
[0110]
时序控制器8200可控制显示驱动电路8000的整体操作。时序控制器8200从外部接收图像数据rgb和控制信号ct0。控制信号ct0可包括作为用于区分帧的信号的垂直同步信号、作为用于区分行的信号的水平同步信号、以及在数据被输出时具有高电平并指示数据被接收的区域的数据使能信号。时序控制器8200输出第一控制信号ct1、第二控制信号ct2和调制后的图像数据rgb’。时序控制器8200通过将图像数据rgb的数据格式转换为适合于源极驱动ic 8300的接口规格来生成调制后的图像数据rgb’,并且将调制后的图像数据rgb’提供给源极驱动ic 8300。第一控制信号ct1表示用于控制源极驱动ic 8300的操作的信号。第一控制信号ct1可包括指示源极驱动ic8300的操作开始的水平开始信号、以及用于确定从源极驱动ic 8300输出数据电压的时序的输出指示信号。第二控制信号ct2表示用于控制栅极驱动ic8400的操作的信号。第二控制信号ct2可包括栅极时钟和垂直开始信号。
[0111]
源极驱动ic 8300基于第一控制信号ct1和调制后的图像数据rgb’将数据电压输出到数据线d1至dm。源极驱动ic 8300也可对调制后的图像数据rgb’执行数模转换操作,以便将其转换为数据电压。
[0112]
栅极驱动ic 8400基于第二控制信号ct2将栅极信号提供给栅极线g1至gn。栅极驱动ic 8400基于第二控制信号ct2生成用于驱动栅极线g1至gn的栅极信号,并且将栅极信号依次输出到栅极线g1至gn。
[0113]
显示面板9000可显示图像。例如,显示面板9000可在各种面板(诸如,有机发光二极管(oled)面板、有源矩阵有机发光二极管(amoled)面板、液晶显示(lcd)面板、电泳显示面板、电润湿显示面板和等离子体显示面板(pdp))中被实现。显示面板9000包括栅极线g1至gn、数据线d1至dm以及像素px。栅极线g1至gn中的每条从显示驱动电路8000接收栅极电压。数据线d1至dm中的每条从显示驱动电路8000接收数据电压。栅极线g1至gn和数据线d1至dm电隔离并且彼此交叉。每个像素px可与栅极线g1至gn中的一条和数据线d1至dm中的一条连接。
[0114]
图15是示出根据本公开的实施例的电子装置的操作方法的流程图。为了便于描述,将参照图8的参考标记/标号来描述图15。
[0115]
在操作s101中,第一电源模块4100可基于从外部接收的第一输入电压vin1生成第一输出电流iout1。根据本公开的实施例,电源模块4000可根据系统负载20的负载电流il来选择内部供电模式和外部供电模式中的一者。因此,根据供电模式,第一输入电压vin1可以是第一内部输入电压vin1_int或第一外部输入电压vin1_ext。例如,在内部供电模式下,第一电源模块4100可基于第一内部输入电压vin1_int通过模拟ldo稳压器4120生成第一内部输出电流iout1_int。同时,在外部供电模式下,第一电源模块4100可基于第一外部输入电压vin1_ext生成第一外部输出电流iout1_ext。
[0116]
在操作s102中,第二电源模块4200可将第一输入电压vin1的电平与第二参考电压
vref2的电平进行比较。
[0117]
在操作s103中,比较器4221可基于将第一输入电压vin1的电平与第二参考电压vref2的电平进行比较的结果生成比较信号cs。例如,当第二参考电压vref2的电平高于第一输入电压vin1的电平时,比较器4221可生成指示逻辑高的值(例如,“1”)的比较信号cs。相比之下,当第二参考电压vref2的电平低于第一输入电压vin1的电平时,比较器4221可生成指示逻辑低的值(例如,“0”)的比较信号cs。
[0118]
在操作s104中,移位寄存器4222可基于比较信号cs生成与比较信号cs的累积信息对应的结果码“q”。
[0119]
在操作s105中,晶体管阵列4223可基于结果码“q”和第二输入电压vin2生成第二输出电流iout2。
[0120]
在操作s106中,电源模块4000可通过基于第一输出电流iout1和第二输出电流iout2生成输出电流iout来将电力提供给系统负载20。
[0121]
在操作s107中,电流传感器4110_1、4110_2、4110_3、4210_1和4210_2可通过感测在第一电源模块4100和第二电源模块4200中流过的电流生成第一电流信息id1和第二电流信息id2。根据本公开的实施例,移位寄存器4222可生成与结果码“q”对应的第二电流信息id2。
[0122]
在操作s108中,电压控制器4300可基于第一电流信息id1和第二电流信息id2生成反馈信号fs,反馈信号fs包括指示在下一时段是升高、降低还是保持第一输入电压vin1和/或第二输入电压vin2的电平的信息。
[0123]
在操作s109中,电压控制器4300可将反馈信号fs发送到外部。接收反馈信号fs的外部装置可向电源模块4000施加具有调节的电平(例如,增大的、减小的或保持的电平)的第一输入电压vin1和/或第二输入电压vin2。
[0124]
在操作s110中,确定系统负载20是否持续需要电力。当确定系统负载20持续需要电力时(是),该过程进行到操作s101。当确定系统负载20不需要电力(否)时,该过程结束。
[0125]
根据本公开,即使流到系统负载的电流的电平改变,电子装置也可通过实时地调节输入电压的电平来始终以最佳的效率来消耗功率。
[0126]
虽然已经参照本公开的实施例描述了本公开,但是对于本领域技术人员将清楚的是,在不脱离如所附权利要求中阐述的本公开的精神和范围的情况下,可对其进行各种改变和修改。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1