本发明涉及一种视频目标跟踪方法,特别是涉及一种基于动态稀疏投影的视频目标跟踪方法。
背景技术:
利用投影矩阵把高维的图像空间信息转化成低维的特征空间信息,通过计算低维特征空间信息实现快速鲁棒的视频目标跟踪,具有非常重要的意义。现有的视频跟踪方法主要有:基于离线学习的视频跟踪方法和基于在线学习的视频跟踪方法。文献“Real-timecompressivetracking.ECCV,20:866–879,2012.”公开了一种基于在线学习的视频跟踪方法。该方法采用稀疏投影矩阵获取低维的图像特征空间信息,之后采用朴素贝叶斯分类器对所有样本的特征信息进行分类获取最优的分类结果实现目标的跟踪。在稀疏投影阶段,利用一个维数固定的稀疏投影矩阵,获得所有正样本和负样本图像的低维特征信息。利用该投影矩阵获取的低维特征信息,将最大限度的表达出对应的高维图像信息。但是该投影矩阵的构建是在初始阶段完成,构建该投影矩阵的过程是一个随机采样的过程,因此当该投影矩阵的维数固定不变时,所生成的投影矩阵在跟踪过程中会出现如下问题:1)当稀疏矩阵的维数较小时,由于采样分布的不足导致低维特征信息不能完全表达高维的图像信息,造成低分辨率、低纹理、低对比度的目标跟踪过程失效;2)当稀疏矩阵的维数较大时,由于采样分布的冗余导致计算复杂度的提高并容易造成目标遮挡、目标自身变化情况下的跟踪过程失效。综上所述,固定维数稀疏投影矩阵的视频跟踪方法的鲁棒性并不是很好。
技术实现要素:
为了克服现有固定稀疏投影矩阵跟踪方法鲁棒性差的不足,本发明提供一种基于动态稀疏投影的视频目标跟踪方法。该方法利用一系列不同维数的稀疏投影矩阵获取不同的低维图像特征信息,在此基础上利用朴素贝叶斯分类器分别得到对应的分类样本;其次,通过计算每一个分类样本的与前一帧样本的特征对比度、与初始帧样本的图像相似度、当前帧目标与背景的像素分布差异度比较结果获取各自的权重信息,选取权重最优的分类样本作为最终的目标跟踪结果,可以提高跟踪结果的准确率。本发明解决其技术问题所采用的技术方案是:一种基于动态稀疏投影的视频目标跟踪方法,其特点是包括以下步骤:步骤一、生成稀疏投影矩阵稀疏投影矩阵R的组成元素rij采用随机采样的方式获取,定义如下。式中,s=2或者s=3。步骤二、利用上一帧跟踪结果的图像坐标位置lt-1,生成正样本集合Dα={z|||l(z)-lt-1||<α}和负样本集合Dβ,ζ={z|β<||l(z)-lt-1||<ζ}。定义一组多尺度因子{h1,1,...,hw,h}对所有样本都进行多尺度矩形滤波,多尺度因子的表示如下,式中,i和j分别代表矩形滤波框的宽和高。经过多尺度矩形滤波处理后,所有图像样本被转换成高维的多尺度图像特征向量其中m=(wh)2。利用步骤一生成的一系列稀疏投影矩阵把多尺度图像特征向量x转换成各自对应的低维特征向量vi=Rix(3)式中,分别对应稀疏投影矩阵空间、图像空间、特征空间,其中n<<m。步骤三、利用朴素贝叶斯分类器H(v)对所有低维特征向量vi进行分类,式中,先验假设p(y=1)=p(y=0),y∈{0,1}代表二值分类的类标签。利用参数控制条件概率分布形成高斯分布,标量参数分别都是增量更新参数,式中,参数λ=0.85,经过朴素贝叶斯分类器处理后,每一个随机投影矩阵Ri对应的都得到一个分类样本l(Ri)。步骤四、分别计算每一个分类样本l(Ri)与初始目标样本的直方图统计信息对比度、与前一帧目标样本的特征直方图统计信息对比度、目标区域与目标所处的背景区域的直方图统计信息三个对比度信息。令分类样本l(Ri)的像素直方图为Hcur(i),初始目标样本的像素直方图为Hinit,式中,N=256。根据Simi的大小排序,从大到小分别赋予直方图对比度权重信息(λ1,λ2,…,λm),其中λ1>λ>,…,>λm。计算像素直方图相似度Simi(Hcur(i),Hinit)并根据Simi(Hcur(i),Hinit)的大小排序,从大到小分别赋予直方图对比度权重信息(λ1,λ2,…,λm),其中λ1>λ>,…,>λm;令分类样本l(Ri)的特征直方图为Tcur(i),前一帧目标样本的特征直方图为Tpre(i),根据的大小排序,从大到小分别赋予特征直方图对比度权重信息(δ1,δ2,…,δm),其中δ1>δ2>,…,>δm。计算特征相似度Dis(Tcur(i),Tpre(i))并根据Dis(Tcur(i),Tpre(i))的大小排序,从大到小分别赋予特征直方图对比度权重信息(δ1,δ2,…,δm),其中δ1>δ2>,…,>δm;令目标的像素特征直方图为Hobj(i),背景样本的像素特征直方图为Hbg(i),分别计算目标和背景的概率密度并进行归一化得到p(i)=Hobj(i)/nobj,q(i)=Hbg(i)/nbg,nobj、nbg分别代表目标样本和背景样本的数量,p(i)、q(i)分别代表目标样本和背景样本的离散概率密度。利用p(i)、q(i)得到似然函数,式中,δ=0.001,防止log出现为0的情况。通过计算L(i)的方差判断目标样本特征和背景样本特征的差异度,利用方差计算公式var(x)=Ex2-(Ex)2得到式中,a(i)是概率密度函数。得到似然函数的方差比公式式中,L(i)为似然函数,var(x)为方差公式。根据直方图对比度VRi的大小排序,从大到小分别赋予特征直方图对比度权重信息(η1,η2,…,ηm),其中η1>η2>,…,>ηm。根据三个对比度信息得到每一个分类样本l(Ri)的权值总量w(Ri)=ωs·Σλsiml(Ri)+ωf·Σδdisl(Ri)+ωd·Σηdisl(Ri)(12)式中,ωs=0.4、ωf=0.3、ωd=0.3。当w(Ri)<Ndynamic时,重新生成一个新的稀疏投影矩阵Ri'代替当前的Ri,从而实现动态稀疏投影矩阵的更新。选取w(Ri)权值最大的Ri所对应的分类样本作为当前帧的目标跟踪结果。本发明的有益效果是:由于本发明利用一系列不同维数的稀疏投影矩阵从高维图像上获取不同的低维图像特征信息,在此基础上利用朴素贝叶斯分类器分别得到对应的分类样本;通过计算每一个分类样本的与前一帧样本的特征对比度、与初始帧样本的图像相似度、当前帧目标与背景的像素分布差异度比较结果获取各自的权重信息,动态更新权值小于阈值的稀疏投影矩阵并选取权重最优的分类样本作为最终的目标跟踪结果,跟踪结果准确率达到85%以上。下面结合具体实施方式对本发明作详细说明。具体实施方式本发明基于动态稀疏投影的视频目标跟踪方法具体步骤如下:步骤一、生成稀疏投影矩阵稀疏投影矩阵R的组成元素rij采用随机采样的方式获取,定义如下。式中,s=2或者s=3。为了提高算法的鲁棒性及计算的实时性,一次生成10个稀疏投影矩阵,矩阵的维数采用均匀随机采样的方式在0~100之间生成。步骤二、利用上一帧跟踪结果的图像坐标位置lt-1,生成正样本集合Dα={z|||l(z)-lt-1||<α}和负样本集合Dβ,ζ={z|β<||l(z)-lt-1||<ζ},定义α=4生成45个正样本;定义ζ=8,β=30,在生成的大量负样本中,随机选取50个作为负样本。定义一组多尺度因子{h1,1,…,hw,h}对所有样本都进行多尺度矩形滤波,多尺度因子的表示如下,式中,i和j分别代表矩形滤波框的宽和高。经过多尺度矩形滤波处理后,所有图像样本被转换成高维的多尺度图像特征向量其中m=(wh)2。利用步骤一生成的一系列稀疏投影矩阵把多尺度图像特征向量x转换成各自对应的低维特征向量vi=Rix(3)式中,分别对应稀疏投影矩阵空间、图像空间、特征空间,其中n<<m。步骤三、利用朴素贝叶斯分类器H(v)对所有低维特征向量vi进行分类,式中,先验假设p(y=1)=p(y=0),y∈{0,1}代表二值分类的类标签。利用参数控制条件概率分布形成高斯分布,标量参数分别都是增量更新参数,式中,参数λ=0.85,经过朴素贝叶斯分类器处理后,每一个随机投影矩阵Ri对应的都得到一个分类样本l(Ri)。步骤四、分别计算每一个分类样本l(Ri)与初始目标样本的直方图统计信息对比度、与前一帧目标样本的特征直方图统计信息对比度、目标区域与目标所处的背景区域的直方图统计信息三个对比度信息。令分类样本l(Ri)的像素直方图为Hcur(i),初始目标样本的像素直方图为Hinit,式中,N=256。根据Simi的大小排序,从大到小分别赋予直方图对比度权重信息(λ1,λ2,…,λm),其中λ1>λ>,…,>λm。计算像素直方图相似度Simi(Hcur(i),Hinit)并根据Simi(Hcur(i),Hinit)的大小排序,从大到小分别赋予直方图对比度权重信息(λ1,λ2,…,λm),其中λ1>λ>,…,>λm;令分类样本l(Ri)的特征直方图为Tcur(i),前一帧目标样本的特征直方图为Tpre(i),根据的大小排序,从大到小分别赋予特征直方图对比度权重信息(δ1,δ2,…,δm),其中δ1>δ2>,…,>δm。计算特征相似度Dis(Tcur(i),Tpre(i))并根据Dis(Tcur(i),Tpre(i))的大小排序,从大到小分别赋予特征直方图对比度权重信息(δ1,δ2,…,δm),其中δ1>δ2>,…,>δm;令目标的像素特征直方图为Hobj(i),背景样本的像素特征直方图为Hbg(i),分别计算目标和背景的概率密度并进行归一化得到p(i)=Hobj(i)/nobj,q(i)=Hbg(i)/nbg,nobj、nbg分别代表目标样本和背景样本的数量,p(i)、q(i)分别代表目标样本和背景样本的离散概率密度。利用p(i)、q(i)得到似然函数,式中,δ=0.001,防止log出现为0的情况。通过计算L(i)的方差判断目标样本特征和背景样本特征的差异度,利用方差计算公式var(x)=Ex2-(Ex)2得到式中,a(i)是概率密度函数。得到似然函数的方差比公式式中,L(i)为似然函数,var(x)为方差公式。根据直方图对比度VRi的大小排序,从大到小分别赋予特征直方图对比度权重信息(η1,η2,…,ηm),其中η1>η2>,…,>ηm。根据三个对比度信息得到每一个分类样本l(Ri)的权值总量w(Ri)=ωs·Σλsiml(Ri)+ωf·Σδdisl(Ri)+ωd·Σηdisl(Ri)(12)式中,ωs=0.4、ωf=0.3、ωd=0.3。当w(Ri)<Ndynamic时,重新生成一个新的稀疏投影矩阵Ri'代替当前的Ri,从而实现动态稀疏投影矩阵的更新。选取w(Ri)权值最大的Ri所对应的分类样本作为当前帧的目标跟踪结果。