空气质量指数的预测方法与流程

文档序号:14722437发布日期:2018-06-17 21:22阅读:2432来源:国知局

本发明涉及一种空气质量指数的预测方法,属于环境检测技术领域。



背景技术:

随着社会的发展和经济的进步,环境问题日益严峻,尤其是近年来严重的大气污染直接危害着人们的身体健康,发展环境检测和治理技术受到普遍重视和支持。空气质量指数(AirQualityIndex,AQI)是定量描述空气质量状况的无量纲指数,预测较为准确的未来空气质量,能够为环境检测研究提供指导,为人们安排出行提供便利。

现有的空气质量指数预测方法,主要包括:

SPRINTARS(SpectralRadiation-TransportModelforAerosolSpecies)方法,其是以全球规模模拟大气悬浮颗粒物对气候系统造成的影响及大气污染状况开发的数值模型。以海气耦合模型MIROC为基础,对存在于对流层中自然形成及人为形成的主要大气气溶胶,包括黑色碳、有机物、硫酸盐、土壤颗粒及海盐颗粒进行研究,该方法具有一定的科学性,但存在以下缺点:一方面,该方法主要从宏观上考虑大气环流整体因素,从大气环流的维度上分析污染物的扩散形式,而对于特定区域(如城市)的具体气候情况难以详细区分。由于同一区域的具体气候情况,会因季节、时间段、甚至人为因素等发生变化,例如,某地区新建化工厂前后,污染物的排放和积累明显不同,因此,该方法难以对特定区域进行准确的预测;另一方面,该方法数据采集量巨大、数据计算量巨大,至少需要收集大量的污染源具体信息及卫星气象信息,同时配置高性能的硬件设备提供数据处理功能,成本高、专业性强,并不适于普通用户使用。

第二种是基于化学预报模式计算进行预报WRF(WeatherResearchandForecastingModel)-Chem(Chemistry)方法,该方法同样需要极高的计算资源,难以实现。



技术实现要素:

鉴于上述原因,本发明的目的在于提供一种空气质量指数的预测方法,该方法需较少的数据资源、较低的计算资源,即可实现AQI的预测,且预测较为准确。

为实现上述目的,本发明采用以下技术方案:

一种空气质量指数的预测方法,包括以下步骤:

S1:获取预测区域的历史天气数据,该历史天气数据包括历史AQI值、历史气象数据;

S2:对该历史天气数据进行预处理,包括将历史天气数据转换为适于计算机处理的数据;

S3:基于特征选择模型、回归分析模型、时间序列分析模型,构建AQI预测模型;

S4:对构建的AQI预测模型进行评估,选出预测准确率最高的作为最优的AQI预测模型。

进一步的,

所述步骤S1中,所述历史天气数据包括日期、天气状况、温度、风向、风力、AQI数据字段。

所述步骤S2包括:对各数据字段进行合规性检查;将各数据字段的取值转换为适于计算机处理的数据;生成温差字段。

将所述天气状况字段转换为包括天气实际状况的天气实际状况字段,根据天气实际状况对该天气实际状况字段赋值。

所述步骤S3包括:

S31:将预处理后的历史天气数据分割成训练集和测试集;

S32:对该训练集的数据应用所述特征选择模型,得到与AQI最为相关的特征变量;

S33:对得到的特征变量应用所述回归分析模型进行训练,得到各模型对应的训练结果;

S34:对训练集中的AQI数据应用所述时间序列分析模型进行训练,得到各模型对应的训练结果。

所述特征选择模型包括皮尔森相关系数法、逐步回归法,所述回归分析模型包括应用广义线性模型、神经网络、分类回归树模型;所述时间序列分析模型包括ARIMA,指数平滑、holt-winter模型。

所述步骤S4包括:

对构建的AQI预测模型进行诊断,若数据异常点大于一正常阈值,则删除数据异常点,然后重新构建AQI预测模型;

对所述回归分析模型得到的训练结果进行比较,得到其中的最优回归预测器;

对所述时间序列分析模型得到的训练结果进行比较,得到其中的最优时序预测器;

将该最优回归预测器、最优时序预测器进行比较,得到所述最优的AQI预测模型。

该方法还包括:将所述最优的AQI预测模型部署于所述预测区域;显示所述预测区域的AQI相关指标。同时每隔一段时间最新训练数据更新AQI预测模型,确保模型时效性。

将最新的天气数据加载到所述最优的AQI预测模型,进行AQI预测。

每隔一预定时间,利用最新训练数据更新所述AQI预测模型。

本发明的优点在于:

1)本发明的空气质量指数的预测方法,需较少的数据资源、较低的计算资源,即可实现AQI的预测,且预测较为准确,该方法不仅具有科学性,且能够大幅降低预测成本;

2)方法结合回归分析模型预测、时间序列分析模型预测,具有先进性与独创性;

3)AQI预测模型经训练优化后,预测过程无需人工干预,大大节约了成本;

4)能够动态显示预测区域(如,全国各大城市)的空气质量,利于快速定位污染位置。

附图说明

图1是本发明的方法流程图。

图2是本发明的方法流程简化框图。

图3A、3B是本发明于一具体实施例中的AQI展示示意图。

具体实施方式

以下结合附图和实施例对本发明作进一步详细的描述。

图1是本发明的方法流程图,如图1、2所示,本发明公开的空气质量指数的预测方法,包括以下步骤:

S1:获取预测区域的历史天气数据

获取预测区域于一定历史时期内的AQI数据,该AQI数据至少包括日期及对应的AQI值,

获取预测区域于一定历史时期内的气象数据,该气象数据包括晴阴雨雪、温度、风向、风力等。

将获取的历史AQI数据和历史气象数据按照对应的数据字段格式保存于数据库中。如表1所示,于一具体实施例中,各数据字段包括:日期、白天天气状况、夜间天气状况、最高气温、最低气温、白天风向、白天风力、夜间风向、夜间风力、AQI等。

表1

上述历史AQI数据、历史气象数据可从预测区域的环境保护监测中心等权威机构获取。

S2:对获取的历史天气数据进行预处理

S21:对各数据字段进行合规性检查;

S22:将各数据字段的取值转换为适于计算机处理的数据;

例如,将白天天气状况字段根据白天天气的实际状况(晴、多云、阴、雨雪等情况)生成包括白天天气实际状况的新字段,如表2所示,根据表1所示白天天气实际状况(包括晴、多云、阴三种情况),生成白天天气_晴、白天天气_多云、白天天气_阴三个白天天气实际状况字段;然后,根据当天的白天天气实际状况,对当天的白天天气实际状况字段进行编码赋值,例如,若当日白天天气为晴,则白天天气_晴字段取值1,而白天天气_多云、白天天气_阴字段均取值0。

表2

夜间天气状况字段、白天风向字段、夜间风向字段的数据转换方法类似。

S23:生成温差字段

根据获取的历史气象数据,生成用于表示每日温差的温差字段,温差=白天气温-夜间气温。

S3:构建AQI预测模型

S31:将经步骤S2处理后的历史天气数据按一定比例随机分割成训练集和测试集两个数据集,两个数据集包含相同的字段;

例如,假设获取并处理历史天气数据共300条,按照80∶20的比例划分成两个数据集,得到训练集共300*80%=240条数据,测试集共300*20%=60条数据。

S32:对训练集数据应用特征选择模型,得到与AQI最为相关的特征变量;

例如,对训练集数据应用皮尔森相关系数法、逐步回归法等特征选择模型,得到训练集数据中与AQI字段相关的特征变量字段。

S33:对得到的特征变量应用基于数据挖掘的回归分析各类模型进行训练,得到各模型对应的训练结果;

例如,对特征向量应用广义线性模型、神经网络、回归树模型等模型进行训练,得到每类模型对应的训练结果,输出以特征向量为自变量、AQI为因变量的关系结果。

S34:对训练集中的AQI应用时间序列分析各类模型进行训练,得到各模型对应的训练结果。

例如,对训练集中的AQI数据运用ARIMA,指数平滑、holt-winter模型进行训练,得到每类模型对应的训练结果,输出以历史AQI数据为自变量、预测AQI数据为因变量的关系结果。

S4:对构建的AQI预测模型进行诊断和评估,得到最优的AQI预测模型

对步骤S3得到的AQI预测模型进行诊断,若其中的数据异常点大于一正常阈值,则删除数据异常点,重新执行步骤S1-S3,构建新的AQI预测模型。

对步骤S33中,每个回归分析模型得到的训练结果进行比较,得到其中的最优回归预测器;

对步骤S34中,每个时间序列模型得到的训练结果进行比较,得到其中的最优时序预测器;

对得到的最优回归预测器、最优时序预测器进行再次比较,最终得到预测准确率最高的AQI预测模型作为最优的AQI预测模型。

S5:将最优的AQI预测模型部署、应用于预测区域

将最新日期的天气数据(可根据天气预报获得)加载到最优的AQI预测模型,进行AQI预测,并将预测值与真实值保存入数据库。同时每隔一段时间系统会用最新训练数据更新AQI预测模型,确保AQI预测模型的时效性。预测模型每天执行一次,会对所有预测区域进行AQI预测,确保预测实时性。

S6:预测区域AQI的显示

如图3A、3B所示,以地图、条形图、折线图等形式实时显示预测区域的AQI相关指数,显示一定时期内预测区域的AQI趋势及预测,各预测区域的AQI排名、预测区域AQI预测值与AQI真实值的对比曲线等。

本发明的空气质量指数的预测方法,通过获取特定区域的历史天气数据,对历史天气数据进行预处理,包括合规性检查、数据转换、生成衍生字段等,然后,基于特征选择模型、回归分析模型、时间序列分析模型,构建AQI预测模型,从中选出预测准确率最高的AQI预测模型作为最优AQI预测模型,作为该区域的AQI预测模型,并可实时显示该区域AQI的各项指标。本发明无需获取大量的数据、无需高配置的硬件设备,即可实现特定区域AQI的预测,且方法简单科学、预测结果较为准确。

以上所述是本发明的较佳实施例及其所运用的技术原理,对于本领域的技术人员来说,在不背离本发明的精神和范围的情况下,任何基于本发明技术方案基础上的等效变换、简单替换等显而易见的改变,均属于本发明保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1