一种指静脉融合模糊金库的实现方法与流程

文档序号:11808399阅读:467来源:国知局
一种指静脉融合模糊金库的实现方法与流程

本发明属于密码学与生物特征识别技术领域,具体涉及一种指静脉融合模糊金库的实现方法。



背景技术:

早在1994年,Bodo在一项德国专利中提出:直接对生物模板数据提取进行应用,结果作为密钥供给密码系统。这是最早将密码学的密钥与生物模板结合在一起的一种方案。

1998年,Soutar首次提出密钥与生物的特征绑定的概念及其方案。方案可以分成两个阶段:注册与认证。注册方案的目的,是将任意N位密钥和用户的指纹绑定在一起,产生生物特征密文,用于储存和验证。Davida等就在密钥中引入了虹膜特征,当输入和模板的比特位差异在10%以内时,文中的密钥绑定方法可以恢复出密钥。但由于此方法要保留纠错码,因此存在原始生物信息泄露的问题。基于Davida等的算法,Juels提出了模糊承诺算法,它是一种新的密码学思想,即纠错码和密码学相结合。但算法要求加锁和解锁集合A与B必须是有序集合。

在2002年A.Juels和M.Sudan提出了“A Fuzzy Vault Scheme”。在其提出的模糊金库算法中,将用户唯一的特征集合或其他属性集合A混合用户的密钥进入基于Reed-Solomn的金库中。用户可以利用与集合A有绝大多数元素相同的属性集合B恢复出密钥。其算法的核心思想是模糊性。

使用指静脉融合模糊金库为本发明的核心,安全性保障由单一用户多指静脉融合后的特征唯一性提供。



技术实现要素:

本发明在真实可靠的实验条件下,针对现有技术的不足,提供了一种指静脉融合模糊金库的实现方法。

本发明解决其技术问题所采用的技术方案包括如下步骤:

步骤1、融合指静脉A和指静脉B图像上的指静脉骨架信息得到静脉骨架图像C,提取特征点得到一个特征信息集合并提取出其特征信息集合。

步骤2、利用上锁算法,将需要保护的密钥与第一步中的特征集合进行绑定,生成指静脉融合模糊金库。

步骤3、利用经过验证的查询指静脉A'和B',融合其指静脉骨架信息得到静脉骨架图像C',提取特征信息,从指静脉模糊金库中采用解锁算法提取密钥。

步骤1所述的融合指静脉A和指静脉B图像上的指静脉骨架信息得到静脉骨架图像C,提取特征点得到一个特征信息集合并提取出其特征信息集合,具体如下:

1.1分别对采集到的指静脉A图像和指静脉B图像进行预处理,预处理的过程依次包括ROI提取、校正、归一化、滤波、二值化、细化。对预处理完成后的指静脉A图像和指静脉B图像进行融合,得到静脉骨架图像C,设预处理完成后的指静脉A图像和指静脉B图像上的每一个像素点所对应的值ωA(i,j)和ωB(i,j),则静脉骨架图像C的具体融合的过程为ωC(i,j)=ωA(i,j)∪ωB(i,j)。

1.2对于融合后的静脉骨架图像C,通过两次指静脉细节点训练,提取并处理指静脉信息,得到一组相对稳定的用户融合后的静脉骨架图像C的细节点集合;然后利用几何哈希技术将静脉骨架图像C的细节点注册成一个哈希表

所述的指静脉细节点训练方法如下:将样本静脉骨架图像C依次进行特征配准,配准时不区分细节点类型;两幅样本图像可配准的细节点记为该枚指静脉的真实细节点,该真实细节点的取值为:取两幅样本图像中的两组坐标值的均值,然后记录该均值为该真实细节点的坐标值;配准好的真实细节点与第三幅样本静脉骨架图像C再次进行特征配准;配准完成后得到相对稳定的真实细节点集合。

几何哈希技术:通过几何不变量描述图形,然后将这些信息以一定的顺序组成哈希表,再使用特征匹配的方法在哈希表中搜索与所需图形相同或相近的图形。

1.3然后将得到的每个真实细节点的平面坐标量化,并串接得到一个长度为16的比特串FC,FC的范围为[0,216-1];然后将所有静脉骨架图像C的细节点的数据类型转化为整数,稳定的真实细节点的个数记为NC

步骤2所述的利用上锁算法,将需要保护的密钥与第一步中的特征集合进行绑定,生成指静脉融合模糊金库,具体如下:

2.1将待绑定的密钥k进行分块处理,分块处理的规则为从左到右按顺序将待绑定的密钥k划分为m块,每块长度为16比特;并将每块数据类型转化为整数,得到一组范围在[0,216-1]内的整数集合K。

2.2根据密钥分块处理产生的块数m,在有限域上构造一个多项式P(x)

P(x)=a0+a1x+a2x2+…+amxm(mod p) (1)

其中,模数p根据经验推荐取值为65537,最高次数m由密钥k长度决定,取值范围为8到16的整数。

2.3为待绑定的密钥k添加16比特长度的CRC循环冗余校验码,并将该的CRC循环冗余校验码的数据类型转化为整数,得到一个范围在[0,216-1]内的整数。

2.4使用步骤2.1中提到的整数集合K与步骤2.3中的得到的CRC循环冗余校验码作为多项式(1)的系数,其中a0为CRC循环冗余校验码,a1,...,am为待绑定的密钥块,由整数集合K中获取;步骤1.3中得到的稳定的用户指静脉信息集合FC中的每个真实细节点数据作为多项式输入值x带入多项式(1)中,求得点集{(x,P(x))|x∈FC}即为模糊金库中的真实点集合。

2.5在模糊金库中的真实点集合中添加远远多于真实点集合个数的杂凑点集合,杂凑点集合中的各组元素均随机产生,并要求各组元素与真实点不相等,且各组元素不满足多项式(1)。

2.6将真实点集合和杂凑点集合乱置,最终生成一个包含真实点集合、杂凑点集合、模糊金库基本信息在内的指静脉融合模糊金库。所述的模糊金库基本信息包括多项式最高次数m、模数p。

步骤3所述的利用经过验证的查询指静脉A'和B',融合其指静脉骨架信息得到静脉骨架图像C',提取特征信息,从指静脉融合模糊金库中采用解锁算法提取密钥,具体如下:

3.1通过使用和步骤1.1相同的方法,分别对采集到的指静脉图像A'和指静脉B'图像进行预处理,并融合成新指静脉骨架图像C'。

3.2提取、处理新指静脉骨架图像C'中的指静脉信息,得到一组指静脉细节点。然后通过几何哈希技术注册一个哈希表与步骤1.2中获取的哈希表进行匹配,筛选出匹配数目最多的基准点集合HC'

3.3对步骤3.2所述的指静脉细节点,通过步骤1.3中获取整数集合FC的方法得到FC',其范围在[0,216-1]内,细节点的个数为NC';如果NC'≥m+1,进入步骤3.4;否则跳转到步骤3.1。

3.4将整数集合FC'与指静脉融合模糊金库中的各组数据进行遍历对比,若相符的点的个数不小于m+1,则进入步骤3.5;否则密钥提取失败。

3.5对找到的相符的点进行组合计算,每m+1个点为一组,对每组利用拉格朗日插值法尝试恢复可能密钥,并将得到的可能密钥进行CRC校验。若通过CRC校验,则可能密钥即为密钥,提取密钥成功;否则继续下一组尝试。直到尝试完所有组合情况,仍未提取到密钥,则提取密钥失败。

本发明的有益效果

与单一指静脉特征方法相比较,本发明利用指静脉图像融合方法大大增加了指静脉特征点数目,一般情况下单个指静脉图像的特征点约为10个左右,对于密钥提取可能会造成一定影响。而使用本发明中的图像融合方案,在融合两个指静脉图像的同时增加了融合后图像的交叉点个数,因此指静脉图像的特征点数目可达到30个左右(如图1(e)所示),有利于指静脉模糊金库解锁过程中的密钥提取。本发明利用指静脉图像融合生成的模糊金库来实现密钥保护,具有更强的安全性、更高的实现效率,保证只有合法用户在合法指静脉下才能提取到带有CRC校验功能的密钥,保障了密钥安全存储的机密性、完整性、可用性。

附图说明

图1(a)、(b)、(c)、(d)和(e)指静脉融合模糊金库真实点示意图

图2指静脉融合模糊金库实现方法流程图

图3指静脉融合模糊金库的解锁流程图

具体实施方式

以下结合附图对本发明作进一步说明。

一种指静脉融合模糊金库的实现方法,主要包括三个部分:第一步,融合指静脉A和指静脉B图像上的指静脉骨架信息得到静脉骨架图像C,提取特征点得到一个特征信息集合并提取出其特征信息集合。第二步,利用上锁算法,将需要保护的密钥与第一步中的特征集合进行绑定,生成指静脉融合模糊金库。第三步,利用经过验证的查询指静脉A'和B',融合其指静脉骨架信息得到静脉骨架图像C',提取特征信息,从指静脉模糊金库中采用解锁算法提取密钥。

所述的融合指静脉A和指静脉B图像上的指静脉骨架信息得到静脉骨架图像C,提取特征点得到一个特征信息集合并提取出其特征信息集合(流程图如图2所示),具体如下:

1.1分别对采集到的指静脉A图像(如图1(a)所示)和指静脉B图像(如图1(b)所示)进行预处理,预处理的过程依次包括ROI提取、校正、归一化、滤波、二值化、细化。对预处理完成后的指静脉A图像(如图1(c)所示)和指静脉B图像(如图1(d)所示)进行融合,得到静脉骨架图像C(如图1(e)所示),设预处理完成后的指静脉A图像和指静脉B图像上的每一个像素点所对应的值ωA(i,j)和ωB(i,j),则静脉骨架图像C的具体融合的过程为ωC(i,j)=ωA(i,j)∪ωB(i,j)。

1.2对于融合后的静脉骨架图像C,通过两次指静脉细节点训练,提取并处理指静脉信息,得到一组相对稳定的用户融合后的静脉骨架图像C的细节点集合(如图1(e)所示);然后利用几何哈希技术将静脉骨架图像C的细节点注册成一个哈希表

所述的指静脉细节点训练方法如下:将样本静脉骨架图像C依次进行特征配准,配准时不区分细节点类型;两幅样本图像可配准的细节点记为该枚指静脉的真实细节点,该真实细节点的取值为:取两幅样本图像中的两组坐标值的均值,然后记录该均值为该真实细节点的坐标值;配准好的真实细节点与第三幅样本静脉骨架图像C再次进行特征配准;配准完成后得到相对稳定的真实细节点集合。

1.3然后将得到的每个真实细节点的平面坐标量化,并串接得到一个长度为16的比特串FC,FC的范围为[0,216-1];然后将所有静脉骨架图像C的细节点的数据类型转化为整数,稳定的真实细节点的个数记为NC

步骤2所述的利用上锁算法,将需要保护的密钥与第一步中的特征集合进行绑定,生成指静脉融合模糊金库,具体如下:

2.1将待绑定的128位密钥k进行分块处理,分块处理的规则为从左到右按顺序将待绑定的密钥k划分为8块,每块长度为16比特;并将每块数据类型转化为整数,得到一组范围在[0,216-1]内的整数集合K。

2.2根据密钥分块处理产生的块数8,在有限域上构造一个多项式P(x)

P(x)=a0+a1x+a2x2+…+a8x8(mod 65537) (2)

2.3为待绑定的密钥k添加16比特长度的CRC循环冗余校验码,并将该的CRC循环冗余校验码的数据类型转化为整数,得到一个范围在[0,216-1]内的整数。

2.4使用步骤2.1中提到的整数集合K与步骤2.3中的得到的CRC循环冗余校验码作为多项式(2)的系数,其中a0为CRC循环冗余校验码,a1,...,a8为待绑定的密钥块,由整数集合K中获取;步骤1.3中得到的稳定的用户指静脉信息集合FC中的每个真实细节点数据作为多项式输入值x带入多项式(2)中,求得点集{(x,P(x))|x∈FC}即为模糊金库中的真实点集合。

2.5在模糊金库中的真实点集合中添加远远多于真实点集合个数的杂凑点集合,杂凑点集合中的各组元素均随机产生,并要求各组元素与真实点不相等,且各组元素不满足多项式(2)。

2.6将真实点集合和杂凑点集合乱置,最终生成一个包含真实点集合、杂凑点集合、模糊金库基本信息在内的指静脉融合模糊金库。所述的模糊金库基本信息包括多项式最高次数8、模数65537。

步骤3所述的利用经过验证的查询指静脉A'和B',融合其指静脉骨架信息得到静脉骨架图像C',提取特征信息,从指静脉融合模糊金库中采用解锁算法提取密钥,具体如图3所示:

3.1通过使用和步骤1.1相同的方法,分别对采集到的指静脉图像A'和指静脉B'图像进行预处理,并融合成新指静脉骨架图像C'。

3.2提取、处理新指静脉骨架图像C'中的指静脉信息,得到一组指静脉细节点。然后通过几何哈希技术注册一个哈希表与步骤1.2中获取的哈希表进行匹配,筛选出匹配数目最多的基准点集合HC'

3.3对步骤3.2所述的指静脉细节点,通过步骤1.3中获取整数集合FC的方法得到FC',其范围在[0,216-1]内,细节点的个数为NC';如果NC'≥9,进入步骤3.4;否则跳转到步骤3.1。

3.4将整数集合FC'与指静脉融合模糊金库中的各组数据进行遍历对比,若相符的点的个数不小于9,则进入步骤3.5;否则密钥提取失败。

3.5对找到的相符的点进行组合计算,每9个点为一组,对每组利用拉格朗日插值法尝试恢复可能密钥,并将得到的可能密钥进行CRC校验。若通过CRC校验,则可能密钥即为密钥,提取密钥成功;否则继续下一组尝试。直到尝试完所有组合情况,仍未提取到密钥,则提取密钥失败。

本技术领域中的普通技术人员应当认识到,以上实施例仅是用来说明本发明,而并非作为对本发明的限定,只要在本发明的实质范围内,对以上实施例的变化、变型都将落在本发明的保护范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1