本发明属于卫星遥感监测技术领域,具体涉及一种枣树冠层叶绿素a含量的卫星遥感监测方法。
背景技术:
叶绿素是植物中的主要色素,也是最重要的色素,高等植物叶绿素由两种,叶绿素a和叶绿素b,他们参与光能吸收、传递和转化,控制着叶片吸收太阳辐射的量,从而控制着光合作用的潜力及初级生产力。利用叶绿素含量还可以进行准确地间接估计植物营养状态。叶绿素的改变是环境胁迫和物候期的指示,在植物收到胁迫以及在衰老进程中,叶绿素含量会降低,叶绿素a和叶绿素b的壁纸也会因非生物因素的影响而发生变化。因此,测定总叶绿素、叶绿素a、叶绿素b含量能够洞察到有关植物与环境相互作用的有用信息。因此,在枣树种植培育过程中,叶绿素a是一种非常重要的生物化学参数,快速获取叶绿素a含量信息是监测枣树生长发育及品质保证的前提。
传统技术测量植物叶片叶绿素a浓度需要高效液相色谱法,这既耗费时间。人力,又对植物造成损伤,而且也很昂贵,领外,从田间到实验室的运输和样本制备过程中很可能损失植物叶绿素a,从而导致植物色素含量发生变化,因此,传统技术所具有的破坏性性质及诸多不足,限制了监测植物叶绿素a时间动态的能力。
而卫星遥感可以快速、经济、环保、无损的监测大面积(县域尺度及以上或1万亩及以上)枣树冠层的叶绿素a含量。但目前关于利用卫星遥感数据应用于枣树冠层叶绿素a含量的研究甚少,尤其是缺乏相应的枣树叶绿素a含量反演模型。
技术实现要素:
为了解决现有技术中存在的问题,本发明提供了一种枣树冠层叶绿素a含量的卫星遥感监测方法,包括如下步骤:
S1:确定待监测区域;
S2:下载待监测区域的卫星遥感影像;
S3:对下载的卫星遥感影像进行几何精校正;
S4:对几何精校正后的卫星遥感影像进行辐射校正;
S5:对辐射校正后的卫星遥感影像进行大气校正;
S6:对大气校正后的卫星遥感影像进行裁剪,得到监测区域影像;
S7:计算监测区域影像中每个像元的GSAVI、GNDVI、GMSAVI2、GDVI、DVI共5个植被指数;
S8:将与每个像元对应的75个植被指数GSAVI、GNDVI、GMSAVI2、GDVI、DVI通过ENVI5.1软件的波段运算功能通过波段运算代入枣树冠层叶绿素a含量的模型,Y=-4.858049GSAVI+3.376759GNDVI-3.659318GMSAVI2-1.921458GDVI-1.907048DVI+1.28776,计算出监测区域中对应像元的枣树冠层叶绿素a含量;
其中,Y为枣树冠层的叶绿素a含量,单位为mg/g。
优选地,S2中,所述卫星遥感影像来源于Landsat 8卫星,所述Landsat 8卫星空间分辨率为30米。
更优选地,S7中,所述GSAVI的计算公式为:
GSAVI=1.5*[(NIR-G)/(NIR+G+0.5)];所述GNDVI的计算公式为:
GNDVI=(NIR-G)/(NIR+G);所述GMSAVI2的计算公式为:
GMSAVI2=0.5*[2*(NIR+1)-SQRT((2*NIR+1)2-8*(NIR-G))];所述GDVI的计算公式为:GDVI=NIR–G;所述DVI的计算公式为:DVI=NIR–R;
其中,G代表Landsat 8卫星遥感影像大气校正后的TM3波段的反射率,其波段区间为0.525-0.600μm;R代表Landsat 8卫星遥感影像大气校正后的TM4波段的反射率,其波段区间为0.630-0.680μm;NIR代表Landsat 8卫星遥感影像大气校正后的TM5波段的反射率,其波段区间为0.845-0.885μm。
优选地,S3-S5中,所述几何精校正、所述辐射校正、所述大气校正均在软件ENVI5.1中完成。
更优选地,所述大气校正采用FLAASHAtmospheric Correction方法。
本发明提供的枣树冠层叶绿素a含量的卫星遥感监测方法,实现了待监测区域快速、准确、经济、环保的获取枣树冠层叶绿素a含量数据,相较于传统的室内化学分析测定方法来讲,该发明不需要配制任何化学试剂,避免了测定过程中化学尾液排放对环境的污染和对人体的伤害,同时也大大简化了操作步骤,缩短了监测时间,而相对于光谱测定方法来讲,该发明的优势是在大面积枣园叶绿素a含量监测时更快速、更省力、更经济。该发明能满足农业生产中区域尺度的枣园能在短时间内获取枣树冠层叶绿素a数据的需求,为枣树田间管理提供依据,适合推广应用于区域尺度(县域尺度及以上或1万亩及以上)的枣树冠层叶绿素a含量监测。
附图说明
图1为本发明实施例中提供的枣树冠层叶绿素a含量实测值与卫星遥感监测值散点图(n=30)。
具体实施方式
为了使本领域技术人员更好地理解本发明的技术方案能予以实施,下面结合具体实施例对本发明作进一步说明,但所举实施例不作为对本发明的限定。
一种枣树冠层叶绿素a含量的卫星遥感监测方法,具体包括以下步骤:
查询Landsat8卫星在该待监测区域的过境时间,该Landsat8卫星的分辨率为30米,卫星过境时如果天气晴朗无云,下载Landsat8卫星在该待监测区域当日的遥感影像。本实施例的具体实施时间为2016年8月9日,待监测区域为新疆一师11团地域内的巴山公司的红枣基地,当日天空晴朗无云。本实施例共采集了60个枣树冠层的样品,其中30个样品用于构建枣树冠层叶绿素a含量的反演模型,另外30个用于检验模型的反演精度。
下载该监测区域的卫星遥感影像后,对卫星遥感影像进行几何精校正,然后对几何精校正后的卫星遥感影像进行辐射校正,接着对辐射校正后的卫星遥感影像进行大气校正,最后对大气校正后的卫星遥感影像进行裁剪,裁剪出监测区域影像。上述几何精校正、辐射校正、大气校正依次进行,且在软件ENVI5.1中完成。
在监测区域影像内,以相对于实际地面面积为30m*30m且边线的朝向为正南正北或正东正西方向的的正方形作为一个像元,随机选取多个像元作为对应多个待监测的取样单元,并以选取的取样单元的对角线交叉点为中心,记录该中心的地理坐标信息,以代表该取样单元的位置信息,在所述取样单元内采用5点法取样,相邻两个取样单元的中心点之间的距离不小于50米,本实例共采集60个取样单元的信息。在裁剪后的Landsat 8卫星影像上利用ArcGis软件的Extraction功能提取每个取样单元的枣树冠层的TM3波段、TM4波段、TM5波段的反射率。
然后通过TM3波段、TM4波段、TM5波段的反射率数据计算每个取样单元的枣树冠层的NG、NR、NNIR、RVI、GRVI、DVI、GDVI、NDVI、GNDVI、SAVI、GSAVI、OSAVI、GOSAVI、MSAVI2、GMSAVI2、RDVI、GRDVI共17个植被指数。
同时,采集对应取样单元的叶片,具体为在与上述同一取样单元内采用5点法取样,然后混合成一个样,取样时需均匀的采集枣树冠层上、中、下部位的叶片,采集好的样品带回实验室后烘干研磨成粉状样品,进行化学分析测定其叶绿素a含量。
具体的,上述各植被指数的具体计算公式为:NG=G/(NIR+R+G);NR=R/(NIR+R+G);NNIR=NIR/(NIR+R+G);RVI=NIR/R;GRVI=NIR/G;DVI=NIR–R;GDVI=NIR-G;NDVI=(NIR-R)/(NIR+R);GNDVI=(NIR-G)/(NIR+G);SAVI=1.5*[(NIR-R)/(NIR+R+0.5)];GSAVI=1.5*[(NIR-G)/(NIR+G+0.5)];OSAVI=(NIR-R)/(NIR+R+0.16);GOSAVI=(NIR-G)/(NIR+G+0.16);MSAVI2=0.5*[2*(NIR+1)-SQRT((2*NIR+1)2-8*(NIR-R))];GMSAVI2=0.5*[2*(NIR+1)-SQRT((2*NIR+1)2-8*(NIR-G))];RDVI=SQRT(NDVI*DVI);GRDVI=SQRT(GNDVI*GDVI);其中,上述各计算公式中,G代表Landsat 8卫星遥感影像大气校正后的TM3波段的反射率,其波段区间为0.525-0.600μm;R代表Landsat 8卫星遥感影像大气校正后的TM4波段的反射率,其波段区间为0.630-0.680μm;NIR代表Landsat 8卫星遥感影像大气校正后的TM5波段的反射率,其波段区间为0.845-0.885μm。
将每个取样单元内采集的枣树冠层样品采用传统的室内化学分析方法获得的叶绿素a含量标准结果与NG、NR、NNIR、RVI、GRVI、DVI、GDVI、NDVI、GNDVI、SAVI、GSAVI、OSAVI、GOSAVI、MSAVI2、GMSAVI2、RDVI、GRDVI数值进行相关性矩阵分析,选择相关性达极显著水平的植被指数作为建模入选因子,但如果入选的植被指数之间的自相关性达极显著水平,则只选取其中与叶绿素a含量相关性最高的植被指数作为入选因子。
根据以上方法本次共选出GSAVI、GNDVI、GMSAVI2、GDVI、DVI共5个植被指数作为枣树冠层叶绿素a含量的建模因子。
根据30个采用传统的室内化学分析方法获得的叶绿素a含量数据与其对应的取样单元的GSAVI、GNDVI、GMSAVI2、GDVI、DVI数值,采用偏最小二乘法构建枣树冠层叶绿素a含量的模型,其模型为:Y=-4.858049GSAVI+3.376759GNDVI-3.659318GMSAVI2-1.921458GDVI-1.907048DVI+1.28776;其中,Y为枣树冠层的叶绿素a含量,单位为mg/g。
将剩余30个取样单元的GSAVI、GNDVI、GMSAVI2、GDVI、DVI数值代入枣树冠层叶绿素a素含量的模型进行反演:Y=-4.858049GSAVI+3.376759GNDVI-3.659318GMSAVI2-1.921458GDVI-1.907048DVI+1.28776,计算其对应的叶绿素a含量数据,并将其与传统的室内化学分析方法测定结果进行比较,检验该模型的反演精度。
表1是利用传统的室内化学分析方法获取的枣树冠层叶绿素a含量的真实值与利用上述枣树冠层叶绿素a含量卫星遥感监测模型得到的监测值的统计数据。
表1枣树冠层叶绿素a含量测定值与卫星遥感监测结果的对比(样本数为30)
从表1可知,真实值与监测值二者的平均值、最大值、最小值非常相近。图1是枣树冠层叶绿素a含量检测值与真实值的拟合程度。其中真实值的测定方法为国标法开氏-蒸馏法。真实值与检测值之间的决定系数(R2)达到0.80,均方根误差(RMSE)仅有0.17mg/g,平均绝对误差(MAE)只有0.15mg/g,标准差与均方根误差比(RPD)达到2.01,根据RPD评价标准,RPD>2.0,说明模型具有高精度预测的能力。该结果表明,本发明的方法可以准确、快速的监测枣树冠层叶绿素a含量。
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,其保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内,本发明的保护范围以权利要求书为准。