3D制造部件的布置确定的制作方法

文档序号:18360873发布日期:2019-08-06 23:49阅读:218来源:国知局
3D制造部件的布置确定的制作方法

一些3d制造装置采用增材制造技术以在3d制造装置的3d构造封套内构造或打印部件。由于单个部件典型地不使用整个3d构造封套,因此经常操作3d制造装置以在共同构造操作期间同时地在构造封套内构造多个不同的部件。

附图说明

本公开的特征通过示例的方式示出并且不限于(多个)附图,在附图中相同的附图标记表示相同的元件,其中:

图1示出了示例装置的简化框图;

图2示出了图1中所描绘的示例装置可以与其通信或者图1中所描绘的示例装置可以是其一部分的示例3d制造设备的一部分的简化图;

图3示出了另一示例装置的简化框图;以及

图4示出了用于确定要在3d制造设备的构造封套中制造的部件的布置的示例方法的流程图。

具体实施方式

为了最大化生产量和产量优化,可以在三维(3d)制造设备的构造封套(或者等效地,构造体积)内共同地或同时地制造最多数量的部件。最多数量的部件可以是在单个制造操作期间可以在3d制造设备的构造封套内制造的最大数量的部件。单个制造操作可以包括这样的操作:其中在不移除已制造的部件中的任一部件的情况下在构造封套中制造部件。考虑另一方式,当部件占据构造封套中的体积的最大量时,可以最大化生产量并且可以优化产量。

在一些增材3d制造过程中(例如,在多射流熔融制造过程中以及在其他类型的制造过程中),将热量施加于位于选定区域中的构造材料颗粒,使得这些选择性定位的构造材料颗粒熔化并熔融在一起以形成3d制造部件的一部分。施加的热量中的一些可以渗出到在位于选定区域中的构造材料颗粒的外面的(例如,与其相邻的)其他构造材料颗粒。这种所谓的“热渗出”可能在由接收过量的热量的其他构造材料颗粒形成的部件的部分中导致问题。例如,接收比预期更多的热量的那些构造材料颗粒可能变得过度熔融,这可能导致质量差的部分或部件。

本文公开了用于确定要在3d制造设备的构造封套中制造的部件的布置的方法和装置。特别地,所确定的布置可以这样的布置:该布置优化(例如,最大化)要在3d制造设备的构造封套中共同地或同时地制造的部件的数量,同时补偿热能管理问题,例如,部件之间的能量不平衡和热耦合(串扰)效应。部件的布置可以包括部件的放置和定向。在一个方面,通过本文公开的方法和装置的实现方式,可以解决关于部件的热能管理问题,同时可以确定可以导致优化的包装以及对部件的高质量制造的部件的布置。解决热能管理问题的部件的布置可以包括优先地避免在构造封套内的例如不期望热效应的特定位置。例如,可以避免对部件的质量具有不均匀的、不可预测的和/或有害的热效应的特定位置。例如,避免这些特定位置可以导致由于构造材料降级而导致的材料再循环减少,其中构造材料的降级是由于构造材料过热而导致的。

根据示例,可以确定针对部件的多个级别的描述(或者等效地,描述符),其中描述的每个级别可以对应于复杂度的不同的级别。通过示例的方式,可以确定针对部件的四个级别的描述。在这个示例中,第一级别描述可以各自是对相应部件的立方体边界框的描述,第二级别描述可以各自是对相应部件的椭圆体凸包的描述,第三级别描述可以各自是对相应部件的计算机辅助设计的平滑后的版本的描述,以及第四级别描述可以各自是对相应部件的最初计算机辅助设计的描述。描述中所包含的数据的量可以随着级别的增加而增加,因此,描述的复杂度也可以随着描述的级别的增加而增加。

特别地,第一级别描述可以比第二级别描述相对更不复杂,第二级别描述可以比第三级别描述相对更不复杂,以及第三级别描述可以比第四级别描述相对更不复杂。因此,与使用这些描述执行计算相关联的计算资源(例如,时间、能量等)可以随着描述的级别的增加而增加。如本文所讨论的,可以使用描述来执行计算以确定部件在3d制造设备的构造封套中的布置,该布置使部件的数量最大化而同时维持部件之间的间隙在部件之间满足相应热解耦空间。计算的执行可以包括优化算法的实现,以确定部件是否在构造封套内适合而同时维持提供相应热解耦空间的足够的间隙。

根据示例,第一级别描述可以最初地在优化算法的实现方式中使用,以关于是否部件在构造封套内同时地适合而同时在部件之间满足相应热解耦空间做出确定。例如,可以通过对在构造封套的坐标轴中的部件的热耗散属性进行建模来确定相应热解耦空间。热耗散属性的模型可以用于确定在部件之间要求的用于将部件之间的热耦合(串扰)效应维持在低于特定阈值水平的最小距离(例如,热解耦空间)。该特定阈值水平可以通过测试、建模、用户定义等来确定。

如果对第一级别描述的使用导致成功的包装(例如,所有的部件都被包括在构造封套中,同时在部件之间维持相应热解耦空间),则通过使用第一级别描述所确定的部件的布置可以被识别为针对部件的合适布置。然而,如果在优化算法的实现方式中对第一级别描述的使用未导致成功的包装,则可以使用第二级别描述。如果对第二级别描述的使用导致成功的包装,则通过使用第二级别描述所确定的部件的布置可以被识别为针对部件的合适布置。然而,如果在优化算法的实现方式中对第二级别描述的使用未导致成功的包装,则可以使用第三级别描述。可以对第三级别描述和第四级别描述执行类似的操作。如果对第四级别的使用未导致成功的包装,则可以移除一个部件或多个部件以减少要在构造封套中同时地制造的(即,在共同的制造操作期间的)部件的数量。

通过本文公开的方法和装置的实现方式,可以确定一种包装布置,该包装布置可以使在共同的制造操作期间要在构造封套中制造的部件的数量最大化,同时满足热管理要求。另外地,可以在实现更计算密集且因此更耗时的操作之前实现最不计算密集且因此最不耗时的操作来做出这个确定。因此,在可能的情况下可以避免更计算密集的操作,这可以导致以相对快且高效的方式做出布置确定,因此降低对计算资源的消耗。

在继续之前,应该注意到如本文所使用的,术语“包括(includes)”和“包含(including)”表示但不限于“包括(includes)”或“包含(including)”和“包括至少”或“包含至少”。术语“基于”表示但不限于“基于”和“至少部分地基于”。

首先参考图1,示出了示例装置100的简化框图。装置100可以包括可以控制装置100的操作的处理器102,并且该处理器102可以是基于半导体的微处理器、中央处理单元(cpu)、专用集成电路(asic)、现场可编程门阵列(fpga)和/或其他硬件设备。装置100还可以包括存储器110,该存储器110上可以存储有处理器102可以执行的机器可读指令112-116(其还可以称作计算机可读指令)。存储器110可以是包含或存储可执行指令的电子、磁性、光学或其他物理存储设备。存储器110可以是例如随机存取存储器(ram)、电可擦除可编程只读存储器(eeprom)、存储设备、光盘等。存储器110(其还可以称为计算机可读存储介质)可以是非暂时性机器可读存储介质,其中术语“非暂时性”不包含暂时性传播信号。

装置100可以是计算设备,例如,个人计算机、台式计算机、智能电话、服务器计算机、平板计算机等。在其他示例中,装置100可以形成3d制造设备的一部分。处理器102可以通过网络、通过有线连接、通过总线等将指令传送到3d制造设备。3d制造设备可以包括用于制造部件的各种组件;例如,用于将构造材料颗粒散布到相应的层中的散布器、用于将助熔剂递送到相应的层的选定区域的递送设备、熔融能量源等。

本文关于图2描述了装置100的各种元件,图2描绘了示例装置100可以与其通信或者装置100可以是其一部分的示例3d制造设备200的一部分的简化图。如图2所示,3d制造设备200可以包括构造区域平台202,该构造区域平台202包括在其上将要由构造材料(例如,构造材料颗粒(未示出))生成3d物体或部件204-208(出于简洁的目的仅利用附图标记标出了3d部件中的三个)的构造区域表面。构造材料颗粒可以是材料的微米尺寸的颗粒,例如,可以熔融在一起来构造3d部件的塑料、陶瓷、金属等。特别地,3d部件204-208将在构造封套210内生成,该构造封套210在本文中等效地称为构造体积。构造封套210可以占据构造区域平台202的构造区域表面的顶部上的三维空间。

例如,构造封套210可以被定义为三维空间,在其中3d制造设备200可以制造或以其他方式生成部件204-208。构造封套210的宽度和长度可以受到构造区域平台202的宽度和长度的限制,并且构造封套210的高度可以受到构造区域平台202在z方向上可以移动的程度的限制,其中构造区域平台202的移动由箭头214表示。尽管未示出,但是诸如活塞之类的致动器可以控制构造区域平台202的垂直位置。

3d制造设备200可以共同地(例如,在构造封套210内在单个构造操作期间)制造多个部件204-208。如本文所公开的,装置100(特别是处理器102)可以确定要在构造封套210中制造的部件204-208的布置,该布置可以导致在共同的打印操作期间最大化的数量的部件204-208被打印,同时还在部件204-208之间提供足够的空间以将部件之间的热耦合限制到特定的水平(例如,低于预定水平)。处理器102还可以确定部件204-208的布置以优先地避免在构造封套210中的可能在该处不期望热效应(例如,不均匀的热量分布、不可预测的热效应等)的特定位置。

例如,部件204-208可以布置在构造封套210中,使得在部件204-208的制造期间从部件204-208的部分发出的热量不会不利地影响相邻部件204-208超出某个预定水平(例如,使得要被制造的部件具有至少一定水平的质量的可接受的水平)。在这方面,并且如本文中更详细讨论的,在确定部件204-208的布置时考虑在部件204-208的制造期间可能发生的部件204-208之间的热相互作用。部件204-208的布置可以包括部件在x、y和z方向上的放置以及部件的旋转(例如,偏航、滚动和倾斜),这导致在单个制造操作期间最大化的数量的部件被制造,同时在部件之间提供特定热解耦空间。应该注意到,部件204-208可以在构造封套210内的任何方向/旋转处制造,例如以最大化被制造的部件的数量,同时在部件之间提供特定热解耦空间。

应该清楚地理解的是,图2中描绘的3d制造设备200可以具有多种不同的配置中的任一种,并且可以使用若干种不同的增材技术中的任一种来构造或打印部件204-208。例如,3d制造设备200可以采用以下项中的任一项:多射流熔融、选择性激光烧结、选择性激光熔化、立体光刻等。因此,例如,3d制造设备200可以在部件204-208的制造中使用各种类型的材料,例如,基于功率的材料、基于液体的材料等。

参考图1和图2,处理器102可以提取、解码并执行指令112以针对要在3d制造设备200的构造封套210中同时地制造的多个部件204-208中的每一个生成针对部件的第一级别描述和第二级别描述。对于相同的部件204-208,第一级别描述可以比第二级别描述更不复杂。例如,针对第一部件204的第一级别描述可以比针对第一部件204的第二级别描述相对更不复杂。描述的复杂度可以与用于描述部件204-208的数据的量相对应。通过示例的方式,与对部件204的更不复杂的描述相比,对部件204的更复杂的描述可以描述部件204的更多数量的点、更多数量的边缘、更多数量的表面等。

根据示例,第一级别描述可以各自是对相应部件的立方体边界框的描述,因此,可以包括涉及立方体边界框的角的信息。部件的立方体边界框可以被定义为足够大以限制该部件的框。第二级别描述可以各自是对相应部件的椭圆体凸包(或者等效地,椭圆体3d凸包)的描述。部件的椭圆体凸包可以被定义为包含该部件的点的最小凸集。换言之,部件的椭圆体凸包可以被定义为包含该部件的全部凸集的交集。由于对部件的椭圆体凸包的描述比对部件的立方体边界框的描述可以具有更多的数据点,因此对于相应部件,第二级别描述可以比第一级别描述相对更复杂。

根据示例,部件的椭圆体凸包可以由以下等式描述:

等式(1):

在等式(1)中,“x、y和z”是部件的笛卡尔坐标,以及“a、b和c”是沿着笛卡尔坐标的半主轴。然而,如果椭圆体凸包不是以原点为中心,则椭圆体凸包可以由以下等式描述:

等式(2):

在等式(2)中,“x0、y0和z0”是椭圆体质心的坐标。另外地,以点p为中心的任意定向的椭圆体凸包可以通过以下等式的解x来定义:

等式(3):(x-p)ta(x-p)=1。在等式(3)中,a可以是正定矩阵以及x和p可以是向量,以及a的特征向量可以定义椭圆体的主轴,以及a的特征值是半轴的平方的倒数。

另外地或在其他示例中,并且如本文中更详细讨论的,处理器102可以执行指令112以针对部件204-208中的每一个生成附加级别描述。例如,处理器102可以针对部件204-208中的每一个生成第三级别描述和第四级别描述,其中对于相应部件,第四级别描述比第三级别描述更复杂,并且第三级别描述比第二级别更复杂。第三级别描述可以各自是对相应部件的计算机辅助设计的平滑后的版本的描述。第四级别描述可以各自是对相应部件的最初计算机辅助设计的描述。因此,例如,第四级别描述可以关于部件具有最高级别的细节。相应部件的计算机辅助设计可以被定义为数字描述,该数字描述可以包括部件的形状、体积和其他尺寸信息的全部。计算机辅助设计还可以包括其他信息,例如,所使用的材料、部件中包括的颜色等。

描述中包含的数据的量因此可以随着描述级别的增加而增加,因此,描述的复杂度也可以随着描述的级别的增加而增加。在一个方面,在使用描述执行计算过程时所要求的计算资源的量还可以随着描述的复杂度的增加而增加。即,在确定部件204-208的合适布置时,使用第一级别描述可以比使用较高级别的描述相对更不计算密集。因此,使用较低级别的描述来确定合适布置可以比使用较高级别的描述来确定合适布置要求更少的计算资源和更少的时间。

如本文所讨论的,处理器102可以使用针对部件204-208的多个级别的描述来执行递归过程,多个级别的描述从部件204-208的最低级别的描述(即,最不复杂的描述)开始。在这个方面,当确定使用较低复杂度的描述不导致部件204-208的包装布置满足上面定义的标准时,处理器102可以使用更复杂的描述。因此,处理器102可以提取、解码并执行指令114以使用第一级别描述来最初地确定是否存在部件204-208的这样的布置:该布置导致部件在构造封套210内适合,同时在部件204-208之间提供特定热解耦空间。

处理器102可以实现优化操作以使用第一级别描述来确定是否存在部件204-208的这样的布置:该布置导致部件204-208在构造封套210内共同地适合,同时在部件204-208之间提供特定热解耦空间。对布置的确定还可以包括如本文所讨论地优先地避免构造封套210中的特定位置。优化操作可以包括确定是否存在部件204-208的立方体边界框的这样的布置:该布置导致部件204-208中的每一个都在构造封套210内适合,其中部件204-208彼此间隔开足够的距离以提供特定热解耦空间。这可以包括确定利用立方体边界框(即,部件204-208)的各种定位和定向的版本,这种布置是否存在。

通过示例的方式,处理器102可以实现遗传算法以使立方体边界框在构造封套210中适合。在这个示例中,处理器102可以基于防止在部件204-208之间发生热渗出超过预定水平所要求的最小热距离来将立方体边界框彼此间隔开。部件204-208之间的最小热距离可以通过对部件204-208的热曲线的确定来确定,其中热曲线可以指示沿着部件204-208的部分要被吸收热量的量,因此指示可以从部件204-208以三个维度发生的热渗出的量。部件204-208的热曲线可以通过任何合适的热曲线确定操作的实现方式来确定。根据示例,处理器102可以将部件204-208封装在构造封套210中,使得部件204-208在构造封套210内分布以使部件到部件的热相互作用最小化。为了优化部件204-208的布置,可以适当地对在体积的坐标轴(例如,{x,y,z}、{r,θ,z}或者{ρ,θ,φ})中的热耗散属性进行建模。例如,如果热量在笛卡尔方向({x,y,z})中的每一个方向上成比例地耗散,则接近惩罚可以与1/(距离)3成比例。

在任一方面,处理器102可以将部件204-208放置在构造封套210中的顺序识别为遗传算法的遗传代码。另外地,处理器102可以首先沿x轴展开部件204-208的顺序,然后沿y轴展开,然后沿z轴展开。即,处理器102可以持续在x轴上添加部件直到下一部件不能被添加,然后移动到y轴中的下一行直到第一平面被填满,然后可以向z轴增加。处理器102可以通过旋转部件204-208(例如,切换立方体边界框的x、y、z方向)以及通过在低密度区域中交换两个部件(例如,在x、y或者z方向上提前终止)来改变遗传算法。适合(以及按比例传播到遗传算法的下一代)的优度可以被确定为与部件204-208的集合的总体密度成反比。在任一方面,遗传算法可以基于stevenj.simske等人的“navigationusinginvertinggeneticalgorithms:initialconditionsandnode-nodetransitions(使用反向遗传算法的导航:初始条件和节点-节点转换)”中描述的遗传算法,其公开内容整体在此参考。在其他示例中,可以采用其他优化算法,例如,模拟退火、粒子群优化以及其他元启发式算法。

响应于确定使用对针部件204-208的第一级别描述,部件204-208的布置已经被确定(该布置导致部件在构造封套210内同时地适合,同时在部件204-208之间提供特定热解耦空间),处理器102可以将部件204-208的布置确定为部件204-208的所确定的布置。因此,例如,处理器102可以存储所确定的布置,可以将所确定的布置转发到3d制造设备,可以控制3d制造设备以所确定的布置来制造部件204-208等。

然而,响应于确定使用针对部件204-208的第一级别描述,部件204-208的布置尚未被确定(该布置导致部件在构造封套210内同时地适合,同时在部件204-208之间提供特定热解耦空间),处理器102可以提取、解码并执行指令116。特别地,处理器102可以执行指令116以使用第二级别描述来确定是否存在部件204-208的这样的布置:该布置导致部件204-208在构造封套210内同时地适合,同时在部件204-208之间提供特定热解耦空间。

处理器102可以实现优化操作以使用第二级别描述来确定是否存在部件204-208的这样的布置:该布置导致部件204-208在构造封套210内同时地适合,同时在部件204-208之间提供特定热解耦空间。优化操作可以包括确定是否存在部件204-208的椭圆体凸包的这样的布置:该布置导致部件204-208中的每一个在构造封套210内共同地适合,其中部件204-208彼此间隔开足够的距离以提供特定热解耦空间。这可以包括确定利用椭圆体凸包(即,部件204-208)的各种定位和定向的版本,这种布置是否存在。

通过示例的方式,处理器102可以实现遗传算法以使部件204-208的椭圆体凸包在构造封套210中适合。在这个示例中,处理器102可以基于防止在部件204-208之间发生热渗出超过预定水平所要求的最小热距离来将椭圆体凸包彼此间隔开。部件204-208之间的最小热距离可以如上面所讨论地来确定。

在任一方面,处理器102可以将部件204-208放置在构造封套210中的顺序识别为遗传算法的遗传代码。另外地,处理器102可以首先沿x轴展开部件204-208的顺序,然后沿y轴展开,然后沿z轴展开。即,处理器102可以持续在x轴上添加部件直到下一部件不能被添加,然后移动到y轴中的下一行直到第一平面被填满,然后可以向z轴增加。处理器102可以通过旋转部件204-208(例如,切换椭圆体凸包的x、y、z方向)以及通过在低密度区域中交换两个部件(例如,在x、y或者z方向上提前终止)来改变遗传算法。适合(以及按比例传播到遗传算法的下一代)的优度可以被确定为与部件204-208的集合的总体密度成反比。在任一方面,遗传算法可以基于上面所讨论的遗传算法。

响应于确定使用针对部件204-208的第二级别描述,部件204-208的布置已经被确定(该布置导致部件在构造封套210内适合,同时在部件204-208之间提供特定热解耦空间),处理器102可以将部件204-208的布置确定为部件204-208的所确定的布置。因此,例如,处理器102可以存储所确定的布置,可以将所确定的布置转发到3d制造设备,可以控制3d制造设备以所确定的布置来制造部件204-208等。本文的其他地方提供了各种附加操作,这些操作可以在确定通过使用第二级别描述这样的布置尚未被确定之后执行。

现在转到图3,示出了另一示例装置300的简化框图。装置300可以等效于装置100,并且可以包括处理器302和存储器310。处理器302可以等效于处理器102,并且存储器310可以等效于图1中所描绘的存储器110,因此,本文不提供对装置300、处理器302以及存储器310的详细描述。装置300还可以包括数据存储库304,处理器302可以在其上存储信息,例如,涉及要被制造的部件204-208的信息。数据存储库304可以是易失性和/或非易失性存储器,例如,dram、eeprom、mram、相变ram(pcram)、忆阻器、闪速存储器等。

装置300还可以包括输入/输出接口(未示出),其可以包括硬件和/或软件以使得处理器302能够与外部设备或多个外部设备通信。输入/输出接口可以实现到(多个)外部设备的有线或无线连接。输入/输出接口还可以包括网络接口卡和/或还可以包括硬件和/或软件,以使得处理器302能够与各种输入和/或输出设备(例如,键盘、鼠标、显示器、另一计算设备等)通信,通过输入和/或输出设备用户可以将指令输入到装置300。

存储器310上可以存储有处理器302可以执行的机器可读指令312-322(其还可以称为计算机可读指令)。存储器310(其还可以称为计算机可读存储介质)可以是非暂时性机器可读存储介质,其中术语“非暂时性”不包含暂时性传播信号。

参考图2和图3,处理器302可以提取、解码并执行指令312以识别3d制造设备200要制造的部件204-208。处理器302可以根据存储在数据存储库304中的涉及部件204-208的数据、根据从用户接收的数据等来识别部件204-208。处理器302还可以提取、解码并执行指令314以针对已识别的部件204-208中的每一个生成具有不同复杂度级别的多个描述。即,处理器302可以针对已识别的部件204-208中的每一个生成第一级别描述、第二级别描述、第三级别描述等,其中描述的复杂度随着级别的增加而增加。例如,对于相同的部件,第一级别描述比第二级别描述更不复杂。如上面所讨论的,不同级别的描述可以具有不同量的数据点,因此可以要求不同量的处理资源。

处理器302可以提取、解码并执行指令316,以使用多个描述的集合来确定是否存在部件204-208的这样的布置:该布置导致部件204-208在3d制造设备200的构造体积310内适合,同时在部件204-208之间提供特定热解耦空间。即,处理器302可以使用第一级别描述来确定这种布置是否是可能的。响应于确定使用第一级别描述这种布置已经被确定,处理器302可以将所确定的布置识别为要在制造部件204-208中使用的布置。然而,响应于确定使用第一级别描述,这种布置尚未被确定,处理器302可以执行指令316以使用第二级别描述来确定这种布置是否是可能的。响应于确定使用第二级别描述不能导致对这种布置的确定,处理器302可以执行指令316以确定使用对部件204-208的更高级别的描述这种布置是否已经被确定。处理器302可以在做出这些确定时执行上面所讨论的优化操作。

即,响应于确定使用针对部件204-208的第二级别描述,部件204-208的布置尚未被确定(该布置导致部件在构造封套210内同时地适合,同时在部件204-208之间提供特定热解耦空间),处理器302可以提取、解码并执行指令316。特别地,处理器102可以执行指令316以使用第三级别描述来确定是否存在部件204-208的这样的布置:该布置导致部件204-208在构造封套210内同时地适合,同时在部件204-208之间提供特定热解耦空间。

处理器302可以实现优化操作以使用第三级别描述来确定是否存在部件204-208的这样的布置:该布置导致部件204-208在构造封套210内同时地适合,同时在部件204-208之间提供特定热解耦空间。优化操作可以包括确定是否存在部件204-208的计算机辅助设计的平滑后的版本的这样的布置:该布置导致部件204-208中的每一个在构造封套210内共同地适合,其中部件204-208彼此间隔开足够的距离以提供特定热解耦空间。这可以包括利用部件204-208的计算机辅助设计的平滑后的版本的各种定位和定向的版本,确定这种布置是否存在。通过示例的方式,处理器302可以实现遗传算法以使部件204-208的计算机辅助设计的平滑后的版本以上面所讨论的方式在构造封套210中适合。

响应于确定使用针对部件204-208的第三级别描述,部件204-208的布置已经被确定(该布置导致部件在构造封套210内适合,同时在部件204-208之间提供特定热解耦空间),处理器302可以将部件204-208的布置确定为部件204-208的所确定的布置。

响应于确定使用针对部件204-208的第三级别描述,部件204-208的布置尚未被确定(该布置导致部件在构造封套210内同时地适合,同时在部件204-208之间提供特定热解耦空间),处理器302可以提取、解码并执行指令316。特别地,处理器302可以执行指令316以使用第四级别描述确定是否存在部件204-208的这样的布置:该布置导致部件204-208在构造封套210内同时地适合,同时在部件204-208之间提供特定热解耦空间。

处理器302可以实现优化操作以使用第四级别描述确定是否存在部件204-208的这样的布置:该布置导致部件204-208在构造封套210内同时地适合,同时在部件204-208之间提供特定热解耦空间。优化操作可以包括确定是否存在部件204-208的计算机辅助设计的这样的布置:该布置导致部件204-208中的每一个在构造封套210内共同地适合,其中部件204-208彼此间隔开足够的距离以提供特定热解耦空间。这可以包括利用部件204-208的计算机辅助设计的各种定位和定向的版本,确定这种布置是否存在。通过示例的方式,处理器302可以实现遗传算法以使部件204-208的计算机辅助设计以上面所讨论的方式在构造封套210中适合。

响应于确定使用针对部件204-208的第四级别描述,部件204-208的布置已经被确定(该布置导致部件在构造封套210内共同地适合,同时在部件204-208之间提供特定热解耦空间),处理器102可以将部件204-208的布置确定为部件204-208的所确定的布置。

响应于确定通过使用描述的集合中的任一集合,部件204-208的这种布置尚未被确定,处理器302可以提取、解码并执行指令318以识别要从构造封套210中移除的部件204-208。即,处理器302可以计算最有可能要被移除的部件或者多个部件以允许其余部件在构造封套210内适合,同时在其余部件之间维持特定热解耦空间。根据示例,处理器302可以确定部件中的每一个的x跨度+y跨度+z跨度,其中跨度是在给定坐标中跨物体的距离。处理器302可以选择具有x跨度+y跨度+z跨度的最大值的部件作为移除的最可能的候选。然而,在其中部件的适合非常紧密的实例中,处理器302可以将选定的部件与部件的整个集合的体积溢出相匹配。在示例中,其中部件的总体积比构造封套210的体积大7%,并且部件为总体积的30%、25%、15%、12%、11%、8%和6%(总和为107%),分配了构造封套210的体积的107%,并且8%的体积块是比7%体积溢出大的最小的块。因此,处理器302可以选择与总体积的8%相对应的部件作为被选择要移除的部件。

处理器302可以提取、解码并执行指令320以移除被识别为要从构造体积210移除的部件或多个部件。处理器102还可以执行指令316以确定其余部件的布置,该布置导致其余部件在构造封套210内适合,同时在其余部件之间维持特定热解耦空间。如果需要的话,处理器302可以从构造封套210移除附加的部件或多个部件以找到这样的布置:该布置导致其余部件在构造封套210内共同地适合,同时维持特定热解耦空间。

处理器302可以提取、解码并执行指令322以输出部件204-208的所确定的布置,该布置导致部件204-208在构造封套210内适合。特别地,处理器102可以将所确定的布置存储在数据存储库304中,可以将所确定的布置输出到3d制造设备200,可以将所确定的布置输出到单独的计算设备等。在装置300是3d制造设备200的一部分的示例中,处理器302可以控制3d制造设备200以所确定的布置来制造部件204-208。

关于图4中描绘的方法400更详细地讨论了可以实现装置300的各种方式。特别地,图4描绘了用于确定要在3d制造设备的构造封套中制造的部件的布置的示例方法400。应该理解的是,在不脱离方法400的范围的情况下,图4中描绘的方法400可以包括附加操作,并且本文所描述的操作中的一些操作可以被移除和/或修改。出于说明的目的,参考图2和图3中描绘的特征来进行对方法400的描述,因此,应该理解的是,方法300可以在3d制造设备200中和具有与图2和图3中示出的架构不同的架构的装置300中实现。

一般而言,装置300的处理器302可以实现或执行存储在存储器310上的指令312-322中的一些或全部以执行方法400。在执行方法400之前或者作为执行方法400的一部分,处理器302可以执行指令312以识别要被制造的多个部件204-208。例如,处理器302可以访问信息,例如,多个部件204-208的计算机辅助设计信息,其可以存储在数据存储库304中。计算机辅助设计信息可以标识部件的物理特性,例如,部件的形状和尺寸。处理器302可以从外部设备、从数据存储库304等接收或以其他方式访问包含涉及多个部件204-208的信息的文件。

在框402处,处理器302可以执行指令314以针对部件204-208中的每一个生成多个级别的描述。如上面所讨论的,多个级别的描述可以相对于彼此具有不同复杂度级别,因此与彼此相比可以具有不同的数据量。还如上面所讨论的,多个级别的描述可以包括第一级别描述、第二级别描述、第三级别描述以及第四级别描述。

在框404处,处理器302可以执行指令316以确定使用对部件204-208的第一级别描述,部件204-208的合适布置是否已经被确定。即,例如,处理器302可以执行指令316以确定使用第一级别描述,是否存在部件204-208的这样的布置:该布置导致部件在3d制造设备200的构造封套210内同时地适合,同时在部件204-208之间提供特定热解耦空间。上文中详细描述了处理器302可以做出这个确定的各种方式。

响应于确定使用第一级别描述,部件204-208的合适布置已经被确定,处理器302可以执行指令318以将所确定的布置识别为针对部件204-208的布置,如框406所示。换言之,处理器302可以将在框404处确定的布置识别为要利用其来同时地在构造封套210中制造部件204-208的布置。

然而,响应于确定使用第一级别描述,部件204-208的合适布置尚未被确定,在框408处处理器302可以选择下一级别描述。例如,在使用第一级别描述之后,处理器302可以选择第二级别描述。另外地,在框410处,处理器302可以执行指令316以确定使用部件204-208的下一级别描述,部件204-208的合适布置是否已经被确定。即,例如,处理器302可以执行指令316以确定使用第二级别描述,是否存在部件204-208的这样的布置:该布置导致部件在3d制造设备200的构造封套210内共同地适合,同时在部件204-208之间提供特定热解耦空间。上文中详细描述了处理器302可以做出这个确定的各种方式。

响应于确定使用下一级别描述,部件204-208的合适布置已经被确定,处理器302可以将所确定的布置识别为针对部件204-208的布置,如框406所示。换言之,处理器302可以将在框410处确定的布置识别为要利用其来共同地在构造封套210中制造部件204-208的布置。

然而,响应于确定在框410处部件204-208的合适布置尚未被确定,在框412处处理器302可以确定下一级别描述是否可用。换言之,处理器302可以确定是否已经使用可用描述中的全部来进行在框410处的确定。响应于确定下一级别描述可用,处理器302可以在框408处选择下一级别描述(例如,第三级别描述)并且可以确定使用下一级别描述在框410处部件204-208的合适布置是否已经被确定。处理器302可以重复框406-412,直到处理器302在框412处确定在框410处的“否”条件之后下一级别描述是不可用的。

在框414处,在框412处确定下一级别描述是不可用的之后,处理器302可以执行指令318以识别要从将在构造封套210中共同地制造的部件的集合中移除的部件。处理器302可以通过计算最有可能要被移除的部件以允许其余部件在构造封套210内适合而同时在其余部件之间维持特定热解耦空间来识别要被移除的部件。处理器302可以通过计算附加地识别要被移除的多个部件。在一个示例中,处理器302可以识别要从部件的集合中移除以导致其余部件在构造封套内适合同时在其余部件之间维持特定热解耦空间的最少数量的部件。因此,例如,最有可能要被移除的部件可以是这样的部件:如果该部件被移除,则使要求要被移除以最大化要同时地制造的部件的数量而同时在其余部件之间满足特定热解耦空间的部件的数量最小化。

在框416处,处理器302可以执行指令302以移除在框414处识别的要被移除的部件或多个部件。即,处理器302可以在确定部件204-206的布置时将所识别的部件或多个部件从考虑因素中移除。另外地,处理器302可以重复框404-416,直到在框406处识别部件204-208的这样的布置:该布置使在构造封套210内适合的部件的数量最大化,同时在部件204-208之间提供特定解耦空间。

尽管未在图4中示出,但是处理器302可以执行指令322以输出在框406处识别的所确定的布置。特别地,处理器302可以将所确定的布置存储在数据存储库304中,可以将所确定后的布置输出到3d制造设备200,可以将所确定的布置输出到单独的计算设备等。在装置300是3d制造设备200的一部分的示例中,处理器302可以控制3d制造设备200以所确定的布置来制造部件204-208。

方法400中阐述的操作中的一些或全部可以作为实用程序、程序或子程序包含在任何期望的计算机可访问介质中。另外地,方法400可以由计算机程序体现,该计算机程序可以以活动和非活动两者的各种形式存在。例如,计算机程序可以作为机器可读指令存在,包括源代码、目标代码、可执行代码或其他格式。上面的任一项可以体现在非暂时性计算机可读存储介质上。

非暂时性计算机可读存储介质的示例包括计算机系统ram、rom、eprom、eeprom以及磁盘或光盘或磁带。因此,应该理解的是,能够执行上述功能的任何电子设备可以执行上面列举的那些功能。

尽管在本公开的整体中具体地描述,但是本公开的代表性示例对广泛的应用具有实用性,并且上面的讨论不旨在且不应被解释为限制性的,而是作为本公开的方面的说明性的讨论提供。

本文描述并说明了本公开的示例连同其变型中的一些。本文所使用的术语、描述和附图仅通过说明的方式阐述并且不意味着限制。在本公开的精神和范围内许多变型是可能的,本公开的精神和范围旨在通过所附权利要求书——以及其等效物来限定,其中除非另有指示,否则其中所有的术语均以其最宽泛的合理含义表示。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1