一种信息推送方法与流程

文档序号:12720143阅读:273来源:国知局

本发明涉及一种推送方法,尤其涉及一种信息推送方法。



背景技术:

身处信息爆炸时代,信息过载现象已经成为了影响当前人们信息行为的重要问题之一,人们很难从互联网那繁杂的信息中过滤筛选出自己真正需要的实用信息。在这样的时代背景下,推荐系统正日益获得人们的关注,从推送系统获取信息已经成为互联网时代下人们的一种重要信息获取方式,它广泛运用于大家的日常搜索,社交网络,电子商务等生活和生产行为。然而,现今很多基于推荐系统推送的信息主要还是以信息的“准确度”作为衡量标准。专利号为201210209511.5的中国发明专利公开了“信息推送方法”,其综合考虑了信息更新的时效性及全面性,解决了,使信息推送更加及时精准,但仍未缺乏可以带给人们惊喜性的推送方式。



技术实现要素:

针对上述现有技术的现状,本发明所要解决的技术问题在于提供一种具有惊喜性的信息推送方法。

本发明解决上述技术问题所采用的技术方案为:一种信息推送方法,包括以下步骤:

a、选定目标用户U1在已有数据库中的资料信息;

b、摘取关键信息,计算权重确定出资料信息中用户U1的关键信息;

c、生成关联用户信息,计算关联权重,生成出与用户U1相关联的用户U2在数据库中的资料信息;

d、筛选合适的信息,对用户U2的资料信息,对比U1的资料信息,通过核心匹配算法计算,并将所有符合算法阈值的信息按指定的权值设定进行排序;

e、逆向推送信息,将步骤d中排序好的信息摘选,推送给目标用户U1

进一步的,所述步骤b中权重计算采用:

其中w(t,d)表示文档中的一项的权重;N表示集合中文档数量;dft包含关键词的文档数量;tft,d这是一个t的频率函数的文档,因此,一类集合词的权重由集合中的每个属性的权重确定。

进一步的,所述步骤c中计算关联权重采用:

其中λ是概率相关量的比例系数,概率的关联目标用户U1-Ui只会进行生成新的关联用户。

进一步的,所述步骤d中均不符合算法定义的阈值δ,则以用户U2为作为新的资料文件夹,在用户U2的数据基础上提取关键信息,重复步骤a至c,生成新的用户U3,从U3的资料中提取出符合算法阈值δ的信息;重复该步骤直到程序运行终止条件,设程序最终停止在用户Ui

进一步的,所述步骤d中迭代生成新的用户的终止条件是:

生成的用户与之前生成的用户重复;

或达到阈值δ,其中δ代表预先设定的阈值概率。

进一步的,所述步骤e中,推送给目标用户U1的信息中,标注出此信息与目标用户存在的关联性,即将步骤d过程中此信息生成过程中所有出现过的相关用户信息Ui同时告知于目标用户U1

与现有技术相比,本发明的有益效果是:1)运用该方法设计的消息推送系统,由于是以目标用户本身的数据资料作为分析起点,因此所推送的消息更加符合目标用户本身的需求(相关联的信息);

2)同时,由于人普遍的“社会性”,点明消息来源目标用户之间的关联可以极大地引起用户的关注,吸引他们的兴趣(相关联的人),人们会发现推送的消息越来越符合他们的兴趣,甚至经常带给他们意想不到的收获。

附图说明

图1是本发明的逻辑框图。

具体实施方式

下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的是实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

如图1所示,本发明所述一种信息推送方法,包括以下步骤:

a、选定目标用户U1在已有数据库中资料信息;

b、摘取关键信息,计算权重确定出资料信息中用户U1的关键信息,其权重计算公式:

其中w(t,d)表示文档中的一项的权重;N表示集合中文档数量;dft包含关键词的文档数量;tft,d这是一个t的频率函数的文档,因此,一类集合词的权重由集合中的每个属性的权重确定。

c、生成关联用户信息,计算关联权重,生成出与用户U1相关联的用户U2在数据库中的资料信息,计算关联权重采用:

其中λ是概率的相关量的比例系数,概率的关联目标用户U1-Ui只会进行生成新的关联用户。

d、筛选合适的信息,对用户U2的资料信息,对比U1的资料信息,通过核心匹配算法计算,并将所有符合算法阈值的信息按指定的权值设定进行排序;所述步骤d中均不符合算法定义的阈值δ,则以用户U2为作为新的资料文件夹,在用户U2的数据基础上提取关键信息,重复步骤a至c,生成新的用户U3,从U3的资料中提取出符合算法阈值δ的信息;重复该步骤直到程序运行终止条件,设程序最终停止在用户Ui

其中终止条件是:生成的用户与之前生成的用户重复;或达到阈值δ,其中δ代表预先设定的阈值概率。

为体现推送信息的惊喜性与不确定性。Ui作为终止目标用户,如若关系层数过低,会导致推送信息内容关联度过大、缺少新颖性。其数量应不小于3,最佳实施范围为3≤Ui≤5。

e、逆向推送信息,将步骤d中排序好的信息摘选,推送给目标用户U1。推送给目标用户U1的信息中,标注出此信息与目标用户存在的关联性,即将步骤d过程中此信息生成过程中所有出现过的相关用户信息Ui同时告知于目标用户U1

实施例1

系统平台:类似于Research Gate这样的学术文献交流平台,该平台汇集了来自各学术圈不同专业的学者,平台内的所有文章均由用户自己上传。

图书馆类文献推荐

<1>确定“甲”用户在该平台的信息。例如在本例中,用户“甲”的信息包括收藏、请求或者下载过的具体文献资料。

<2>摘取关键信息。在本例中,选取“甲”用户收藏、请求或者下载文献中各文献的作者名字作为提取的关键信息。利用现有的内容识别方法,对不同文献作者的名字进行特定排序(例如名字出现的频数,将频数由大至小进行排列)。

<3>生成关联用户。根据步骤<2>中对不同文献作者名次的排布,生成新的用户文件夹资料。例如,选取名字出现频数最大的作者“乙”为新的用户资料文件夹。

<4>筛选合适的信息(符合算法定义)。在用户“乙”的文献信息中,对比用户“乙”收藏的文献和用户“甲”收藏的文献,通过核心匹配算法,计算:1)如果用户“乙”中存在文献信息符合算法设定阈值,则对这些文献进行算法指定的权重排列;2)如果用户“乙”收藏的文献信息不符合相关算法设定阈值,则分析用户“乙”的信息,包括收藏、请求或者下载过的具体文献资料,重复步骤<1>至步骤<3>,生成新的用户“丙”。对比用户“丙”和用户“甲”收藏的文献资料,将符合算法阈值的文献按照核心算法指定的权值进行排序;同时,此时程序达到终止条件,停止继续搜索新用户的相关步骤。

<5>逆向推送。根据步骤<4>中排列好的符合算法定义的文献,摘选出特定条数(例如3条),将它们推送给目标用户“甲”。同时,推送过程中指明该推送信息与用户“甲”的关联性。例如在本例中包括:1)如果摘选的推送信息中有来自用户“乙”资料夹的信息I乙,则须注明此信息(I乙)由用户“乙”所储存;2)如果摘选的推送信息中有来自用户“丙”资料夹的信息I丙,则须注明此信息(I丙)由用户“丙”所储存,用户“丙”是用户“乙”收藏(请求或下载)最多的文献作者。

所产生效果:运用本发明的推荐方法,可以帮助用户在进行图书馆类相关的信息行为时,极大地开拓检索人的思路,吸引检索人的注意力,提升检索效率并提升平台带给用户的体验。

实施例2

系统平台:平台所分享的音乐均由用户自己制作或上传。

目标用户:“A”;

<1>确定“A”用户在该平台的信息。本例以用户“A”收藏歌单中,每一首歌曲的上传信息为例。

<2>摘取关键信息。在本例中,选取用户“A”收藏的歌单中所有歌曲的上传作者名字作为提取的关键信息。利用现有的内容识别方法,对这些作者名字进行特定排序(例如名字出现的频数,将频数由大至小进行排列)。

<3>生成关联用户。根据步骤<2>中对不同歌曲上传作者名次的排序,生成新的用户文件夹资料。例如,选取名字出现频数最大的作者“B”为新的用户资料文件夹。

<4>筛选合适的信息(符合算法定义)。分析用户“B”收藏的歌单,对比用户“B”收藏的歌曲和用户“A”收藏的歌曲,通过核心匹配算法,计算:1)如果用户“B”中存在收藏的歌曲符合算法设定阈值,则对这些歌曲进行算法指定的权重排列;2)如果用户“B”收藏的文献信息不符合相关算法设定阈值,则以用户“B”为分析对象,分析用户“B”所收藏的歌曲信息,重复步骤<1>至步骤<3>,生成新的用户“C”。对比用户“C”和用户“A”收藏的歌曲,将符合算法阈值的歌曲按照核心算法指定的权值进行排序;程序尚未终止,在用户“C”的基础上继续生成用户“D”的信息,对比用户“D”和用户“A”收藏的歌曲,将符合算法阈值的歌曲按照核心算法指定的权值进行排序。此时程序达到终止条件,停止继续搜索新用户的相关步骤。

<5>逆向推送。根据步骤<4>中排列好的符合算法定义的歌曲,摘选出特定条数(例如5条),将它们推送给目标用户“A”。同时,推送过程中指明该推送信息与用户“A”的关联性。例如在本例中包括:1)如果摘选的推送信息中有来自用户“B”资料夹的歌曲SB,则须注明此歌曲(SB)由用户“B”所储存;2)如果摘选的推送信息中有来自用户“C”资料夹的信息SC,则须注明此信息(SC)由用户“C”所储存,用户“C”是用户“B”的收藏歌单中的歌曲最多的上传者;3)如果摘选的推送信息中有来自用户“D”资料夹的信息SD,则须注明此信息(SD)由用户“D”所储存,用户“D”是用户“C”的收藏歌单中的歌曲最多的上传者,而用户“C”是用户“B”的收藏歌单中的歌曲最多的上传者。

所产生效果:运用本发明的推荐方法,可以帮助用户在音乐环境中探索更多符合自己爱好的音乐曲目,方便收听者创造更加满意的歌单,从而提升用户对于平台的体验和感受。

最后,由上述两个潜在案例可看出,本发明方法广泛适用于各类平台和系统,特别是对于用户生成内容的平台,运用本发明可以极大地提升用户对平台或系统的个人体验,增加用户体验兴趣进而得到更高质量的体验感受,使用户和平台双方可以相互合作更为紧密、更具有独到的品味和个性,共同创造收益。

对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1