本发明涉及图像处理技术,尤其涉及皮肤区域图像的处理方法、装置和系统。
背景技术:
随着数码技术和图像处理技术的飞速发展,越来越多的人喜欢通过自拍分享照片展示自己,现有的自拍技术通常在拍摄照片后提供简单的美颜功能,例如瞬间自动进行磨皮、美化、瘦脸等功能,使拍摄者无需使用专业图像处理软件,即可直接生成具有美颜效果的照片。
但是,在拍摄人物图像时,现有的磨皮和美化等图像处理技术,通常侧重于处理自拍人物的脸部区域,而很少针对其他区域皮肤进行识别从而对其他区域皮肤进行图像处理。因此,很容易导致被处理过的脸部皮肤与未被处理的其他区域皮肤(例如距离脸部皮肤最近的颈部皮肤)存在一定程度的差异,从而使得图像存在违和感。
技术实现要素:
本发明实施例提供皮肤区域图像的处理方法、装置和系统,可以使美颜后脸部皮肤与其他区域皮肤均匀自然。
根据本发明实施例的一方面,提供一种皮肤区域图像的处理方法,包括:分析获取的人物图像的人脸区域,得到人脸区域的亮度分布和/或色相分布;利用预设的图像分割算法分割人物图像,得到指定皮肤区域;分析指定皮肤区域的亮度分布和/或色相分布;基于人脸区域的亮度分布调整指定皮肤区域的亮度分布,和/或,基于人脸区域的色相分布调整指定皮肤区域的色相分布。
根据本发明实施例的另一方面,提供一种皮肤区域图像的处理装置,包括:人脸区域分析模块,用于分析获取的人物图像的人脸区域,得到人脸区域的亮度分布和/或色相分布;指定皮肤区域获取模块,用于利用预设的图像分割算法分割人物图像,得到指定皮肤区域;指定皮肤区域分析模块,用于分析指定皮肤区域的亮度分布和/或色相分布;指定皮肤区域调整模块,用于基于人脸区域的亮度分布调整指定皮肤区域的亮度分布,和/或,基于人脸区域的色相分布调整指定皮肤区域的色相分布。
根据本发明实施例的再一方面,提供一种皮肤区域图像的处理系统,包括:存储器,用于存储程序;处理器,用于运行存储器中存储的程序,以执行以下步骤:分析获取的人物图像的人脸区域,得到人脸区域的亮度分布和/或色相分布;利用预设的图像分割算法分割人物图像,得到指定皮肤区域;分析指定皮肤区域的亮度分布和/或色相分布;基于人脸区域的亮度分布调整指定皮肤区域的亮度分布,和/或,基于人脸区域的色相分布调整指定皮肤区域的色相分布;显示器,用于显示调整后的指定皮肤区域。
根据本发明实施例中的皮肤区域图像的处理方法、装置和系统,从人物图像中分割得到指定皮肤区域,并通过分析脸部皮肤和指定皮肤区域的亮度和色相的统计信息,对指定皮肤区域进行图像进行针对性的处理,从而减少脸部皮肤与指定皮肤区域的差异,使美颜后脸部皮肤与其他区域皮肤均匀自然。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是示出根据本发明一实施例的皮肤区域图像的处理方法的流程图;
图2是图1中分析获取的人物图像的人脸区域的详细的流程图;
图3是图1中分析指定皮肤区域的亮度分布和/或色相分布的详细的流程图;
图4是根据本发明一实施例的皮肤区域图像的处理装置的结构示意图;
图5是图4中人脸区域分析模块的具体的结构示意图;
图6是图4中指定皮肤区域分析模块的具体的结构示意图;
图7是示出了能够实现根据本发明实施例的皮肤区域图像的处理方法和装置的计算设备的示例性硬件架构的结构图。
具体实施方式
下面将详细描述本发明的各个方面的特征和示例性实施例,为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细描述。应理解,此处所描述的具体实施例仅被配置为解释本发明,并不被配置为限定本发明。对于本领域技术人员来说,本发明可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本发明的示例来提供对本发明更好的理解。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
在本发明实施例中,美颜相关算法会对脸部的亮度与色相进行一些操作。例如,调整色相例如将脸部皮肤变得红润或者白皙、提亮脸部亮度等。作为距离脸部皮肤最近的颈部皮肤,可以参考脸部皮肤的亮度/或色相分布对颈部皮肤等其他区域皮肤进行相应的调整,以得到均匀自然的美颜效果。
下面结合附图,详细描述根据本发明实施例的皮肤区域图像的处理方法、装置和系统。应注意,这些实施例并不是用来限制本发明公开的范围。
图1是示出根据本发明实施例的皮肤区域图像的处理方法的流程图。如图1所示,本实施例中的皮肤区域图像的处理方法100包括以下步骤:
步骤s110,分析获取的人物图像的人脸区域,得到人脸区域的亮度分布和/或色相分布。
步骤s120,利用预设的图像分割算法分割人物图像,得到指定皮肤区域。
步骤s130,分析指定皮肤区域的亮度分布和/或色相分布。
步骤s140,基于人脸区域的亮度分布调整指定皮肤区域的亮度分布,和/或,基于人脸区域的色相分布调整指定皮肤区域的色相分布。
根据本发明实施例的皮肤区域图像的处理方法,可以通过分析脸部皮肤和指定皮肤区域的亮度和色相统计信息,对指定皮肤区域进行矫正,从而减小美颜后脸部皮肤与其他区域皮肤之间的差异。
图2示出了根据本公开一些示例性实施例的皮肤区域图像的处理方法的更详细的流程图,图2与图1相同或等同的步骤使用相同的标号。如图2所示,步骤s110具体可以包括:
步骤s111,获取人物图像的整体皮肤蒙版图像。
步骤s112,根据整体皮肤蒙版图像进行人脸检测,得到人脸区域。
步骤s113,提取人脸区域中的人脸特征点。
步骤s114,分析人脸特征点,获取人脸区域图像的亮度分布和/或色相分布。
在步骤s111中,人物图像可以是只进行了脸部皮肤的亮度和/或色相操作的图像,或者是由于脸部皮肤与其他区域皮肤在人物图像中视觉差异较为明显,需要根据脸部皮肤对其他区域皮肤进行调整的图像。
在该步骤中,通过获取人物图像的整体皮肤蒙版,明确具体想要进行图像处理的区域范围,方便对处理区域内的图像进行灵活的调整。
作为一个示例,通过涂抹工具对人物图像中的所有皮肤区域进行涂抹操作,并在涂抹完成后在涂抹区域生成对应的蒙版层,以获得人物图像的整体皮肤蒙版。
在步骤s114中,亮度分布的均匀性对于视觉能力具有显著的影响,可以通过直方图统计人脸区域图像的亮度分布,当人脸区域图像的亮度分布均匀时,计算人脸区域图像的亮度均值,该亮度均值可以用于后续对其他区域皮肤的处理。
在步骤s114中,通过获取人脸区域图像的色相分布,可以清楚地显示出偏色的分布和程度,从而可以有效地查看图像颜色偏色分布的情况,为后续对其他区域皮肤的处理提供了较好的数据基础。
在步骤s120中,指定皮肤区域可以是颈部皮肤区域。
在一些实施例中,预设的图像分割算法可以是基于边缘检测进行图像分割的方法,利用皮肤边缘灰度的突变特征检测指定区域的皮肤边缘,进行指定皮肤区域的分割基于阈值的分割方法。
在另一些所述中,预设的图像分割算法还可以是基于阈值进行图像分割的方法。
作为一个示例,可以使用自适应阈值分割法分割人物图像。首先,通过最大类间方差法,计算得到人物图像中对指定区域图像进行分割的最优分割阈值,将该最优分割阈值作为自适应阈值对任务图像进行分割,得到该人物图像中的指定皮肤区域。
在该示例中,最优裂纹分割阈值对人物图像进行分割的错分概率最小,从而提高了图像分割后得到的指定皮肤区域图像的准确度。
作为可选实施例,可以利用预设的图像分割算法对人物图像的整体皮肤蒙版图像进行图像分割,得到指定皮肤区域。对人物图像的整体皮肤蒙版图像进行图像分割,可以减小将背景区域误识别为指定皮肤区域的可能性,提高分割后得到的指定皮肤区域图像的准确度。
作为可选实施例,为了精确获取指定皮肤区域,图3示出了根据本公开一些示例性实施例的更详细的流程图。图3与图1相同或等同的步骤使用相同的标号。
如图3所示,步骤s130具体可以包括:
步骤s131,对指定皮肤区域进行形态学滤波处理。
步骤s132,利用连通区域标记法,对形态学滤波处理的结果进行连通域分析,确定指定皮肤区域连通域。
步骤s133,获取指定皮肤区域连通域的皮肤蒙版图像。
步骤s134,分析指定皮肤区域连通域的皮肤蒙版图像,得到指定皮肤区域的亮度分布和/或色相分布。
在步骤s131中,形态学滤波可以用于检测人物图像中的指定皮肤区域。作为一个示例,对初步分割得到的指定皮肤区域的边缘轮廓做数学形态学滤波处理,并对经数学形态学滤波处理后的指定皮肤区域进行轮廓跟踪,可以得到指定皮肤区域的大小;再对得到的指定皮肤区域的大小消除噪声干扰以确定该指定皮肤区域。
在该步骤中,使用形态学滤波可以消除指定皮肤区域的粗糙的边缘轮廓,去除噪声点对获取指定皮肤区域的影响,尽可能多地保留指定皮肤区域的图像信息。
在上述步骤s132中,首先获取采集到的指定皮肤区域的二值化图像,对该二值化图像进行连通域提取并根据提取到的指定皮肤区域连通域的轮廓筛选出噪声干扰点,对筛选出的噪声干扰点进行过滤,从而保留提取到的指定皮肤区域的图像细节特征,对提取到的指定皮肤区域的噪声达到有效抑制的效果。
作为可选实施例,步骤s134中,分析指定皮肤区域连通域的皮肤蒙版图像,得到指定皮肤区域的亮度分布和/或色相分布的步骤具体可以包括:
步骤s134-1,利用指定皮肤区域连通域的皮肤蒙版图像生成指定区域置信度图像。
步骤s134-2,检测指定区域置信度图像中的指定皮肤区域图像。
步骤s134-3,分析检测得到的指定皮肤区域图像,得到指定皮肤区域的亮度分布和/或色相分布。
在本发明实施例中,置信度(confidencemeasure)表示对所获取的指定皮肤区域图像的准确性的衡量,置信度越高,那么获得的指定皮肤区域图像就越可信。
在一些实施例中,置信度图像中的像素可以分为两类,指定皮肤区域图像像素点和非指定皮肤区域图像像素点。也就是说,如果得到的置信度图像中的像素的概率值大于为该置信度图像设置的阈值,则将该像素点确定为指定皮肤区域图像像素点,其像素值用“1”表示;否则,将该像素点确定为非指定皮肤区域图像像素点,其像素值用“0”表示。
在对生成的置信度图像进行二值化后,针对置信度图像中相应像素进行与操作,并将进行与操作之后得到的像素值为1的区域确定为指定皮肤区域图像。
在该实施例中,可以通过置信度图像进一步提高获得指定皮肤区域图像的准确性,提高指定皮肤区域的图像可靠度。
在步骤s140中,基于人脸区域的亮度分布调整指定皮肤区域的亮度分布,和/或,基于人脸区域的色相分布调整指定皮肤区域的色相分布。
通过上述实施例中的皮肤区域图像的处理方法,在获取到脸部皮肤与指定区域皮肤的亮度与色相的统计信息后,可以以脸部皮肤的亮度分布信息为基准调整指定皮肤区域的亮度分布,和/或以脸部区域的色相分布信息为基准调整指定皮肤区域的色相分布,为指定皮肤区域的亮度和/或色相制定个性化的矫正方案。
在本发明实施例中,基于人脸区域的亮度分布调整指定皮肤区域的亮度分布,和/或,基于人脸区域的色相分布调整指定皮肤区域的色相分布的方法有多种。
作为可选实施例,步骤s140具体可以包括:
步骤s141,根据人脸区域的亮度分布和指定皮肤区域的亮度分布,确定指定皮肤区域的像素点的亮度调整参数。
步骤s142,根据人脸区域的色相分布和指定皮肤区域的色相分布,确定指定皮肤区域的像素点的色相调整参数。
步骤s143,基于亮度调整参数调整指定皮肤区域的亮度分布,和/或,基于色相调整参数调整指定皮肤区域的色相分布。
在步骤s141中,可以通过构建人脸区域的亮度直方图获取人脸区域的亮度分布信息。
下面以构建人脸区域图像的亮度直方图为例说明构建人脸区域图像的亮度直方图的过程。
计算人脸区域图像中每个像素点的亮度值,将人脸区域图像转化为栅格图像,计算每一个栅格中包含的像素点的平均亮度,将每个栅格的标号作为横坐标,每个栅格包含的像素点的平均亮度作为纵坐标建立人脸区域图像的亮度直方图。
在步骤s142中,色相分布可以表现为与色相环相对应的色相分布图,色相分布图是红、黄、绿、青绿、蓝、品红等颜色与色相环对应地分配至0°~360°的图像,色相分布图的横轴表示色相,纵轴表示频度。因此,可以通过色相分布图检测出脸部区域或指定皮肤区域的色相分布。
在步骤s143中,可以根据亮度调整参数对指定皮肤区域的亮度分布进行调整,和/或根据色相调整参数调整对指定皮肤区域的色相分布进行调整。
在一些实施例中,也可以同时调整脸部皮肤区域和指定皮肤区域的亮度和色相,设定统一的亮度调整参数和色相调整参数,同时调整脸部皮肤区域和指定皮肤区域。
根据上述本发明实施例提供的皮肤区域图像的处理方法,提供了一种基于皮肤检测的皮肤美化方法,通过分析脸部皮肤与指定皮肤区域的图像统计信息,对指定皮肤区域进行调整,使指定皮肤区域变的均匀自然,达到用户想要的美颜效果。
下面结合附图,详细介绍根据本发明实施例的皮肤区域图像的处理装置。
图4示出了根据本发明一实施例提供的皮肤区域图像的处理装置的结构示意图。如图4所示,皮肤区域图像的处理装置400包括:
人脸区域分析模块410,用于分析获取的人物图像的人脸区域,得到人脸区域的亮度分布和/或色相分布。
指定皮肤区域获取模块420,用于利用预设的图像分割算法分割人物图像,得到指定皮肤区域。
指定皮肤区域分析模块430,用于分析指定皮肤区域的亮度分布和/或色相分布。
指定皮肤区域调整模块440,用于基于人脸区域的亮度分布调整指定皮肤区域的亮度分布,和/或,基于人脸区域的色相分布调整指定皮肤区域的色相分布。
根据本发明实施例中的皮肤区域图像的处理装置,依靠人物图像中脸部皮肤的信息,对剩余皮肤进行处理,从而消除皮肤间的违和感。
图5是示出图4中人脸区域分析模块的更具体的结构示意图。图5与图4中相同或等同模块使用相同的标号。
如图5所示,人脸区域分析模块410具体可以包括:
第一皮肤蒙版获取单元411,用于获取人物图像的整体皮肤蒙版图像。
人脸检测单元412,用于根据整体皮肤蒙版图像进行人脸检测,得到人脸区域。
人脸特征点提取单元413,用于提取人脸区域中的人脸特征点。
第一亮度/色相分析单元414,用于分析人脸特征点,获取人脸区域图像的亮度分布和/或色相分布。
在该实施例中,通过人脸识别分析获取人脸区域图像的亮度分布和/或色相分布,作为后续处理其他皮肤区域提供数据参考。
另外,在本发明实施例中,通过在蒙版图像上进行皮肤图像的处理,操作速度快,效率高,对消除皮肤间的违和感非常有效。
图6是示出图4中指定皮肤区域分析模块的更具体的结构示意图。图6与图4中相同或等同模块使用相同的标号。
如图6所示,指定皮肤区域分析模块430具体可以包括:
形态学滤波单元431,用于对指定皮肤区域进行形态学滤波处理;
连通域分析单元432,用于利用连通区域标记法,对形态学滤波处理的结果进行连通域分析,确定指定皮肤区域连通域;
第二皮肤蒙版获取单元433,用于获取指定皮肤区域连通域的皮肤蒙版图像;
第二亮度/色相分析单元434,用于分析指定皮肤区域连通域的皮肤蒙版图像,得到指定皮肤区域的亮度分布和/或色相分布。
通过本实施例中的皮肤区域图像的处理装置,可以精确获取到指定皮肤区域的图像。
在一些实施例中,第二亮度/色相分析单元434具体可以包括:
置信度图像生成子单元,用于利用指定皮肤区域连通域的皮肤蒙版图像生成指定区域置信度图像。
置信度图像检测子单元,用于检测指定区域置信度图像中的指定皮肤区域图像。
第二亮度/色相分析单元434还用于分析检测得到的指定皮肤区域图像,得到指定皮肤区域的亮度分布和/或色相分布。
在该实施例中,通过分析指定皮肤区域的置信度,进一步提高获得指定皮肤区域图像的准确性,提高指定皮肤区域的图像可靠度。
在一些实施例中,指定皮肤区域调整模块440包括:
亮度调整参数确定单元441,用于根据人脸区域的亮度分布和指定皮肤区域的亮度分布,确定指定皮肤区域的像素点的亮度调整参数。
色相调整量确定单元442,用于根据所述人脸区域的色相分布和所述指定皮肤区域的色相分布,确定所述指定皮肤区域的像素点的色相调整参数。
指定区域图像调整单元443,用于基于所述亮度调整参数调整所述指定皮肤区域的亮度分布,和/或,基于所述色相调整参数调整所述指定皮肤区域的色相分布。
根据本发明实施例的皮肤区域图像的处理装置,可以解决美颜后脸部皮肤与其他皮肤区域产生的违和感,使得人物图像的整体皮肤区域的变得均匀自然。
根据本发明实施例的皮肤区域图像的处理装置的其他细节与以上结合图1至图6描述的根据本发明实施例的皮肤区域图像的处理方法类似,在此不再赘述。
结合图1至图6描述的根据本发明实施例的皮肤区域图像的处理方法和装置可以由可拆卸地或者固定地安装在拍摄装置上的计算设备实现。图7是示出能够实现根据本发明实施例的皮肤区域图像的处理方法和装置的计算设备的示例性硬件架构的结构图。
如图7所示,计算设备700包括输入设备701、输入接口702、中央处理器703、存储器704、输出接口705、以及输出设备706。其中,输入接口702、中央处理器703、存储器704、以及输出接口705通过总线710相互连接,输入设备701和输出设备706分别通过输入接口702和输出接口705与总线710连接,进而与计算设备700的其他组件连接。
具体地,输入设备701接收来自外部(例如,手机终端的摄像头)的输入信息,并通过输入接口702将输入信息传送到中央处理器703;中央处理器703基于存储器704中存储的计算机可执行指令对输入信息进行处理以生成输出信息,将输出信息临时或者永久地存储在存储器704中,然后通过输出接口705将输出信息传送到输出设备706;输出设备706将输出信息输出到计算设备700的外部供用户使用。
也就是说,图7所示的计算设备也可以被实现为包括:存储有计算机可执行指令的存储器;以及处理器,该处理器在执行计算机可执行指令时可以实现结合图1至图6描述的皮肤区域图像的处理方法和装置。这里,处理器可以与图像管理系统以及安装在移动通信终端上的图像拍摄装置通信,从而基于来自图像管理系统和/或图像拍摄装置的相关信息执行计算机可执行指令,从而实现结合图1至图6描述的皮肤区域图像的处理方法和装置。
在一个实施例中,图7所示的计算设备700可以被实现为一种皮肤区域图像的处理系统,该皮肤区域图像的处理系统可以包括:存储器,用于存储程序;处理器,用于运行存储器中存储的程序,以执行以下步骤:分析获取的人物图像的人脸区域,得到人脸区域的亮度分布和/或色相分布;利用预设的图像分割算法分割人物图像,得到指定皮肤区域;分析指定皮肤区域的亮度分布和/或色相分布;基于人脸区域的亮度分布调整指定皮肤区域的亮度分布,和/或,基于人脸区域的色相分布调整指定皮肤区域的色相分布;显示器,用于显示调整后的指定皮肤区域。例如,显示器可以用于显示经亮度分布调整和/或色相分布调整的指定皮肤区域。
通过本发明实施例的皮肤区域图像的处理系统,可以使美颜后的人物图像皮肤均匀自然。
需要明确的是,本发明并不局限于上文所描述并在图中示出的特定配置和处理。为了简明起见,这里省略了对已知方法的详细描述。在上述实施例中,描述和示出了若干具体的步骤作为示例。但是,本发明的方法过程并不限于所描述和示出的具体步骤,本领域的技术人员可以在领会本发明的精神后,作出各种改变、修改和添加,或者改变步骤之间的顺序。
以上所述的结构框图中所示的功能块可以实现为硬件、软件、固件或者它们的组合。当以硬件方式实现时,其可以例如是电子电路、专用集成电路(asic)、适当的固件、插件、功能卡等等。当以软件方式实现时,本发明的元素是被用于执行所需任务的程序或者代码段。程序或者代码段可以存储在机器可读介质中,或者通过载波中携带的数据信号在传输介质或者通信链路上传送。“机器可读介质”可以包括能够存储或传输信息的任何介质。机器可读介质的例子包括电子电路、半导体存储器设备、rom、闪存、可擦除rom(erom)、软盘、cd-rom、光盘、硬盘、光纤介质、射频(rf)链路,等等。代码段可以经由诸如因特网、内联网等的计算机网络被下载。
还需要说明的是,本发明中提及的示例性实施例,基于一系列的步骤或者装置描述一些方法或系统。但是,本发明不局限于上述步骤的顺序,也就是说,可以按照实施例中提及的顺序执行步骤,也可以不同于实施例中的顺序,或者若干步骤同时执行。
以上所述,仅为本发明的具体实施方式,所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、模块和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。应理解,本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。