本发明涉及图像处理技术领域,具体地,涉及一种参数最优的灰度图像增强处理系统。
背景技术:
在图像处理中,图像增强技术对于提高图像的质量起着重要的作用。它通过有选择地强调图像中某些信息而抑制掉另一些信息,以改善图像的视觉效果,将原图像转换成一种更适合于人眼观察和计算机进行分析处理的形式。
灰度变换是图像增强的重要手段之一,通过扩大或改变灰度的值域范围,提高清晰度,使特征更加明显。它主要利用点运算来修正像素灰度,通常可分为线性变换、分段线性变换、非线性变换。线性变换对于灰度范围较窄的图像可以较好的改善图像,对于其他一些图像增强效果并不明显。分段线性变换对于目标和背景可以明确区别的图像,可以借助图像的灰度直方图来确定分段区间的灰度范围,但是一般为了准确确定变换区间,需要反复调整区间范围,很多情况下只能根据经验来确定。在某些情况下,应用非线性变换可以获得比线性变换更好的增强效果,如在图像过暗或过亮的情况下,利用指数变换或对数变换的效果可能比线性变换更好,然而它们容易使图像过增强或欠增强,同时参数也较难控制。
技术实现要素:
为了克服目前用非线性变换增强灰度图像时参数难以控制的不足,本发明目的在于提供一种参数智能寻优的灰度图像增强处理系统。
本发明解决其技术问题所采用的技术方案是:一种参数最优的灰度图像增强处理系统,该系统由图像读入模块、图像预处理模块、参数寻优模块、图像增强与输出模块组成;其中:
图像读入模块读入一幅像素为m×n的灰度图像i,并将其输入图像预处理模块;灰度图像i={f(x,y)},其中x=1,2,…,m,y=1,2,…,n,f(x,y)代表像素点(x,y)的灰度值,f(x,y)∈[lmin,lmax],lmin,lmax分别表示读入的灰度图像的灰度值的最小值和最大值;
图像预处理模块对读入的灰度图像进行归一化处理后,将结果输入参数寻优模块;像素点(x,y)经过归一化以后的像素值为f'(x,y):
参数寻优模块初始化种群规模为ns的粒子群,随机生成维度为2的粒子i的初始位置xi=(xi1,xi2)和初始速度vi=(vi1,vi2),i=1,2,...,ns;其中xi1,xi2∈[0,10],vi1,vi2∈[-10,10],种群规模ns=30~100;然后按以下方法进行迭代,初始时迭代计数t=0:
(1)按公式(2)对每个像素点进行图像增强变换:
其中,f(x,y)为像素点(x,y)经过增强变换以后的像素值;u为读入的灰度图像归一化后的灰度值,即u=f'(x,y),u∈[0,1];a,b为待优化的参数,用粒子的位置状态表示,a=xi1,b=xi2,a,b∈[0,10];q为灰度增强变换公式中的积分变量;
(2)按照公式(3)获取所有粒子的适应度值fitness(a,b):
其中,f2(x,y)为像素点(x,y)增强变换后的灰度值f(x,y)的平方;适应度值最大的粒子为全局最优粒子pbest=(pbest1,pbest2);
(3)对所有粒子进行分群操作,包括以下子步骤:
(3.1)将所有粒子按照适应度值大小从大到小排序,选取适应度值最大的粒子作为一个子群中心;
(3.2)在剩下的粒子中选取适应度值最大的粒子,依次计算该粒子与各个子群中心的欧几里得距离;粒子i与粒子j的欧几里得距离dist(i,j)定义为:
其中,xi=(xi1,xi2)代表粒子i的位置,xj=(xj1,xj2)代表粒子j的位置,i,j=1,2,...,ns;若该粒子与某一个子群中心的欧几里得距离小于半径r,则将该粒子归为该子群中心所在的子群,并不再计算该粒子与剩下的子群中心的欧几里得距离;若该粒子与所有子群中心的距离都大于半径r,则将该粒子置为一个新的子群中心;半径r=1~3;
(3.3)重复步骤(3.2),直到处理完所有粒子,则分群完成,且每个子群中心为该子群中适应度值最大的粒子;
(4)确定种群的进化状态;首先,定义每个粒子与其所在子群的子群中心的距离的绝对值之和dg:
其中,pig=(pig1,pig2)为粒子i所在子群的子群中心的位置;其次,定义每个粒子与其所在子群的子群中心的距离之和的绝对值dg:
定义进化因子δ为:
由定义可知进化因子δ∈[0,1];
(5)按照式(8)(9)更新每个粒子的速度与位置:
vid(t)=w·vid(t-1)+c1r1·(pid-xid(t-1))+c2r2·(pigd-xid(t-1))(8)
xid(t)=xid(t-1)+vid(t)(9)
其中,w为惯性权重;c1,c2为加速度因子,c1=c2=2;r1,r2为0到1之间均匀分布的随机数;pi=(pi1,pi2)为粒子i的历史最优位置,pig=(pig1,pig2)为粒子i所在子群的子群中心的位置;d为维度变量,d=1,2;惯性权重按照式(10)变换:
若更新后xid<0,则令xid=0;若更新后xid>10,则令xid=10;
(6)迭代计数累加,t=t+1;
(7)重复步骤(1)到(6),直到迭代计数达到最大迭代计数tmax则停止迭代,tmax=100~2000;
种群全局最优粒子所在的位置pbest=(pbest1,pbest2)即优化后的参数a,b,即a=pbest1,b=pbest2;参数寻优模块将优化后的参数a,b输入图像增强与输出模块,图像增强与输出模块按照公式(2)进行图像增强变换,并将增强后的图像的灰度值按照公式(11)扩展到[l'min,l'max]范围并输出:
f'(x,y)=(l'max-l'min)×f(x,y)(11)。
本发明的有益效果主要表现在:本发明利用改进的智能优化方法对灰度图像增强变换过程中的参数进行寻优,能够找到使增强效果最好的参数;改进的智能优化方法添加了分群操作,能够防止优化过程陷入局部最优;根据进化状态自适应变化的惯性权重提高了算法的收敛性,加快了系统的运行速度。本发明能够快速准确地确定最优参数对灰度图像进行增强操作,增强效果好,运行效率高。
附图说明
图1是本发明的结构示意图;
图2是本发明的流程图;
图3是本发明中惯性权重w随进化因子δ的变化图。
具体实施方式
下面根据附图具体说明本发明。
参照图1,一种参数最优的灰度图像增强处理系统,包括四个模块:图像读入模块1、图像预处理模块2、参数寻优模块3以及图像增强与输出模块4;其中:
图像读入模块1读入一幅像素为m×n的灰度图像i,并将其输入图像预处理模块2。灰度图像i={f(x,y)},其中x=1,2,…,m,y=1,2,…,n,f(x,y)代表像素点(x,y)的灰度值,f(x,y)∈[lmin,lmax],lmin,lmax分别表示读入的灰度图像的灰度值的最小值和最大值。
图像预处理模块2对读入的灰度图像进行归一化处理后,将结果输入参数寻优模块3。将图像归一化处理是为了适应后续的图像增强变换。像素点(x,y)经过归一化以后的像素值为f'(x,y):
参数寻优模块3初始化种群规模为ns的粒子群,随机生成维度为2的粒子i的初始位置xi=(xi1,xi2)和初始速度vi=(vi1,vi2),i=1,2,...,ns。其中xi1,xi2∈[0,10],vi1,vi2∈[-10,10],种群规模ns=30~100。然后按以下方法进行迭代,初始时迭代计数t=0:
(1)按公式(2)对每个像素点进行图像增强变换:
其中,f(x,y)为像素点(x,y)经过增强变换以后的像素值;u为读入的灰度图像归一化后的灰度值,即u=f'(x,y),u∈[0,1];a,b为待优化的参数,用粒子的位置状态表示,a=xi1,b=xi2,a,b∈[0,10];q为灰度增强变换公式中的积分变量,无实际意义。
(2)按照公式(3)获取所有粒子的适应度值fitness(a,b):
其中,f2(x,y)为像素点(x,y)增强变换后的灰度值f(x,y)的平方。适应度值越大,则图像对比度越高,图像的增强效果越好。适应度值最大的粒子为全局最优粒子pbest=(pbest1,pbest2)。
(3)对所有粒子进行分群操作。相较于传统的粒子群方法,基于分群的粒子群优化方法能防止优化过程陷入局部最优,从而寻找到使图像增强效果最好的全局最优参数。具体包括以下子步骤:
(3.1)将所有粒子按照适应度值大小从大到小排序,选取适应度值最大的粒子作为一个子群中心;
(3.2)在剩下的粒子中选取适应度值最大的粒子,依次计算该粒子与各个子群中心的欧几里得距离。粒子i与粒子j的欧几里得距离dist(i,j)定义为:
其中,xi=(xi1,xi2)代表粒子i的位置,xj=(xj1,xj2)代表粒子j的位置,i,j=1,2,...,ns。若该粒子与某一个子群中心的欧几里得距离小于半径r,则将该粒子归为该子群中心所在的子群,并不再计算该粒子与剩下的子群中心的欧几里得距离;若该粒子与所有子群中心的距离都大于半径r,则将该粒子置为一个新的子群中心。根据搜索空间的大小,半径r=1~3。
(3.3)重复步骤(3.2),直到处理完所有粒子,则分群完成,且每个子群中心为该子群中适应度值最大的粒子。
(4)确定种群的进化状态。随着粒子的更新,种群共经历四种进化状态,即探索期、开拓期、聚合期以及跳出期。下面利用进化因子来表示进化状态。首先,定义每个粒子与其所在子群的子群中心的距离的绝对值之和dg:
其中,pig=(pig1,pig2)为粒子i所在子群的子群中心的位置。其次,定义每个粒子与其所在子群的子群中心的距离之和的绝对值dg:
在进化初始阶段,dg取值略小于dg;在进化收敛阶段,dg取值远小于dg;在跳出阶段,dg取值接近于dg。因此,定义进化因子δ为:
由定义可知进化因子δ∈[0,1]。
(5)按照式(8)(9)更新每个粒子的速度与位置:
vid(t)=w·vid(t-1)+c1r1·(pid-xid(t-1))+c2r2·(pigd-xid(t-1))(8)
xid(t)=xid(t-1)+vid(t)(9)
其中,w为惯性权重;c1,c2为加速度因子,c1=c2=2;r1,r2为0到1之间均匀分布的随机数;pi=(pi1,pi2)为粒子i的历史最优位置,pig=(pig1,pig2)为粒子i所在子群的子群中心的位置;d为维度变量,d=1,2。
惯性权重w越大,算法的搜索能力越强,反之亦然。在探索期,希望惯性权重大一些,在聚合期,希望惯性权重小一些。由于进化因子可以反映进化状态,参照图3,惯性权重按照式(10)变换:
其中,δ为进化因子。由于进化因子δ∈[0,1],因此惯性权重w∈[0.4,0.9]。进化因子大,表示为初始阶段,大的惯性权重能扩大搜索范围;进化因子小,表示为收敛阶段,小的惯性权重能精确搜索。跟随进化状态而变化的惯性权重能够根据实际情况随时调整,提高了算法的搜索能力与收敛速度。
若更新后xid<0,则令xid=0;若更新后xid>10,则令xid=10。
(6)迭代计数累加,t=t+1。
(7)重复步骤(1)到(6),直到迭代计数达到最大迭代计数tmax则停止迭代,tmax=100~2000。
种群全局最优粒子所在的位置pbest=(pbest1,pbest2)即优化后的参数a,b,即a=pbest1,b=pbest2。参数寻优模块3将优化后的参数a,b输入图像增强与输出模块4,图像增强与输出模块4按照公式(2)进行图像增强变换,并将增强后的图像的灰度值按照公式(11)扩展到[l'min,l'max]范围并输出:
f'(x,y)=(l'max-l'min)×f(x,y)(11)。
上述实施例用来解释说明本发明,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明作出的任何修改和改变,都落入本发明的保护范围。