本发明涉及地理信息及遥感领域,具体涉及一种基于地形和夜晚灯光数据的极光观测候选区确定方法。
背景技术:
:随着极光观测技术的发展,研究者将极光强度指数(kp指数)和观测地天气情况结合应用到了极光观测候选区域预测中,为观赏者提供极光观测的位置。在极光观测中,极光强度指数(kp指数)和观测地天气情况进行综合,得到了观测位置极光可见的概率大小。其中,极光强度指数(kp指数)指即单个地磁台用来描述每日每3个小时内的地磁扰动强度的指数,是一种定量的分级指数,从0~9共分10级,数字越大表示地磁扰动越强,一般来说在极圈内的地方,只要kp指数达到3~4就代表极光处于活跃状态,kp指数到5~6就已经属于非常活跃。对于极光观测地的天气情况,天气晴朗可增加极光观测的可能性,观测地多云、降雨、降雪的天气会大大降低极光观测的可能性,需尽量避免。但是,这种基于极光强度指数(kp指数)和观测地天气情况的极光观测方式所得到的极光观测候选区并不完全准确,因为地形高低起伏的影响,有的极光观测候选区被遮挡,并不能观测到极光,同时,由于城市夜晚灯光的干扰,位于城市附近的极光观测候选区也不一定能观测到极光。极光多发生在春秋两季的夜晚时间,气温寒冷,准确的极光观测候选区将为观测者提供更好的观赏体验。基于上述情况,亟需一种准确度更高的极光观测候选区计算方法用于极光观测中。视域指从一个或者多个观测点能看到的区域,视域分析指通过观测点位置以及地形数据计算得到该观测点能看到的区域范围。举例来说,如果将瞭望塔放置在特定位置,则从地表上的哪些位置可以看到瞭望塔,或者从道路上将看到什么风景。如刘礼等将视域分析应用到了风景区旅游设施规划中,周丹等利用视域分析,对矿山环境的视觉污染进行了评价。此外,夜晚灯光卫星遥感数据可用于探测城市灯光、道路灯光甚至低亮度暂时性灯光,如渔灯、火灾、小规模的人类活动区域等,使之明显区别于黑暗的背景,该数据已经应用于多个领域,例如,对城市建成区的提取、经济水平和人口密度的估算、城市群空间格局变化、海洋渔业捕捞监测、人类健康与城市化的关系、能源消耗等。反之,夜晚灯光弱的区域受人类活动所带来的光污染影响较小。技术实现要素:为了解决现有技术中存在的问题,本发明提出一种基于地形和夜晚灯光数据的极光观测候选区确定方法,引入视域分析和夜晚灯光卫星遥感数据分级,在结合极光强度指数(kp指数)和观测地天气情况的基础上提高了原有极光观测候选位置的准确性,以及观测到极光的可能性。本发明提出的基于地形和夜晚灯光数据的极光观测候选区确定方法,包括以下步骤:对极光常年空间分布区域进行网格划分,取网格中心的坐标点为该网格内极光空间分布代表点;选取朝地磁极能够在地平线上看见极光的区域的数字高程模型数据,将其设定为潜在的极光观测区域;对所有的极光空间分布代表点进行视域计算,得到初步极光观测候选区;利用观测时间对应的年度夜晚灯光卫星遥感数据,选取灯光强度最弱的区域,并与初步极光观测候选区进行叠加分析,得到最终极光观测候选区。优选地,所述极光常年空间分布区域的极光强度指数不小于2。优选地,所述数字高程模型数据选自北极地区数字高程模型数据arcticdemmosaic。优选地,所述极光空间分布代表点的高度h为极光垂直分布的平均值。优选地,计算极光空间分布代表点的视域时,观测方位角范围为0-360度,天顶角为-90-0度,高度为h。优选地,所述视域的计算方法为:判断观察点和潜在的极光观测区域中每个像元是否通视,如果通视,则该像元能看到所述观察点处的极光,如果不通视,则该像元能看不到所述观察点处的极光。优选地,所述视域利用arcgis的visibility工具进行计算。优选地,所述年度夜晚灯光卫星遥感数据选自thedefensemeteorologicalprogramoperationalline-scansystemversion4数据或者nasablackmarbleproductsuite数据。优选地,所述最终极光观测候选区为灯光强度最弱的区域,并与初步极光观测候选区与灯光强度最弱的区域的交集。本发明与现有技术相比具有以下优点:(1)本发明基于数字高程模型信息,考虑了地形起伏对极光观测的影响,合理的进行了视域分析,从而获得了更准确的极光观测候选区域;(2)本发明采用了夜晚灯光卫星遥感数据,选取了夜晚灯光最弱的区域,减少了在进行极光观测时,人类活动带来的灯光污染影响。附图说明图1为本发明的极光观测候选区确定方法的流程图;图2为基于视域分析的潜在极光观测区域示意图;图3为北极光空间分布带;图4为冰岛dem及网格划分图;图5为本发明实施例中的研究区dem及网格划分图;图6为arcgis软件visibility工具界面图;图7为本发明实施例中的初步极光观测候选区分布图;图8为冰岛2013年夜晚灯光分布数据;图9为本发明实施例中的初步极光观测候选区与夜晚灯光分布图;图10为本发明实施例中的最终极光观测候选区分布图;图11为冰岛气象局极光预报;图12为本发明实施例中的极光出现可能性概率分布图。具体实施方式为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明作进一步的详细说明。本发明提出一种基于地形和夜晚灯光数据的极光观测候选区确定方法,根据数字高程模型数据,极光高度数据,极光空间分布数据,利用视域分析进行初步极光观测候选区选取;并利用对应年份的夜晚灯光遥感数据进行分级,选择夜晚灯光强度最弱的区域;最后合并初步极光观测候选区和夜晚灯光强度最弱区域,得到最终极光观测候选区。如图1所示,具体实施步骤如下:(1)首先,对极光常年空间分布区域进行网格划分,网格长宽尺寸相同,取网格中心的坐标点为该网格内极光空间分布代表点obs,设定这些极光空间分布代表点为观察点,其高度取极光垂直分布的平均值,设定为固定值h;(2)其次,选取朝地磁极能够在地平线上看见极光的区域的数字高程模型数据(栅格数据),这里选取北极地区数字高程模型数据arcticdemmosaic(https://www.pgc.umn.edu/data/arcticdem/),空间分辨率为5米,每个像元对应的灰度值为其高程值,可直接使用,数据下载地址为ftp://ftp.data.pgc.umn.edu/elev/dem/setsm/arcticdem,将其设定为潜在的极光观测区域;(3)选取一个极光空间分布代表点,设定其为观察点obsi,其高度为h,其观测方位角范围为0-360度,天顶角为-90-0度,负值则表示水平面以下的角度,观测半径到达潜在极光观测区域边缘,如图2所示。然后可以开始对观察点obsi在潜在极光观测区域的视域进行计算,即判断观察点obsi和潜在极光观测区域中每个像元是否通视,如果通视,则该像元能看到观察点obsi处的极光,如果不通视,则该像元能看不到观察点obsi处的极光。本发明用到的是arcgis的visibility工具计算得到对应于观察点obsi的能见区域,也就是潜在的极光观测区域中哪些地方能看到观察点obsi;对所有的极光空间分布代表点obs1……obsn进行视域计算,得到其在潜在极光观测区的能见区域,也就是潜在的极光观测区域中哪些地方能看到观察点obs1……obsn,反过来,就是地面上某一位置可以看到多少个极光空间分布代表点obsi,也就是极光空间分布区域。将能看到极光空间分布代表点的地面位置设定为初步极光观测候选区;(4)利用观测时间对应的年度夜晚灯光卫星遥感数据,2013年以前的选取thedefensemeteorologicalprogram(dmsp)operationalline-scansystem(ols)version4数据(https://www.ngdc.noaa.gov/eog/dmsp/downloadv4composites.html),其空间分辨率为1km,该夜晚灯光数据已经去除极光的影响,选取该数据的stable_lights图层,其值得范围为0-63,可以直接使用。2013年以后,可以选取nasablackmarbleproductsuite(vnp46a2)数据(etal.,2018),该数据的空间分辨率为500米,选取该数据的dnb_brdf-corrected_ntl_500m图层,该数据已经经过去除极光对夜晚灯光数据的影响,每个像元对应的灰度值为其平均辐亮度值(单位:nanowatts/cm2/sr,其中,nanowatts为纳瓦特,即10-9瓦特,em为厘米,sr为立体角计量单位球面度),可直接使用,原始数据下载地址为https://ladsweb.modaps.eosdis.nasa.gov/,或者https://earthobservatory.nasa.gov/features/nightlights/page3.php。选取灯光强度比较弱的区域(这里设定为dmsp/ols的stable_lights图层等于0,或者vnp46a2的dnb_brdf-corrected_ntl_500m图层不大于2.5nanowatts/cm2/sr的像元),并与初步极光观测候选区进行叠加,取其交集,得到最终极光观测候选区。实施例1以极光常年活动强度kp指数为2时的极光分布带(图3)为例(http://auroraforecast.gi.alaska.edu/travelers-guide.php),选取冰岛东南部冰河湖地区周围约70km范围内的地区作为研究区(图4,研究区范围)。极光分布的网格划分,设定网格尺寸为10km*10km,以冰岛为例,则10km的网格分布如图4所示。本实验选取极光分布网格划分中三个网格作为样例,选取其中心点(图4中三个极光分布点),判断三个极光分布点是否对研究区可见,具体指研究区哪些地方可看到三个极光分布点。大多数极光分布在距地面90km到150km的高度(https://en.wikipedia.org/wiki/aurora),本实施例取其平均值,即120km。本实施例中的数字高程模型数据,选取arcticdemmosaic(https://www.pgc.umn.edu/data/arcticdem/)数据(图5),空间分辨率为5米,每个像元对应的灰度值为其高程值,可直接使用,数据下载地址为ftp://ftp.data.pgc.umn.edu/elev/dem/setsm/arcticdem。利用arcgis软件中的toolboxes/systemtoolboxes/3danalysttools/visibility下的visibility工具(图6),进行极光观测可视区域的分析。将试验区dem数据和三个极光分布点的数据输入visibility工具中进行分析,得到针对于三个极光分布点的初步极光候选区(图7),其中,红色区域为0个极光分布点不可见,蓝色区域为1个极光分布点可见,绿色区域为2个极光分布点可见,其他区域为3个极光分布点可见。本实施例中,夜晚灯光数据选取thedefensemeteorologicalprogram(dmsp)operationalline-scansystem(ols)version4数据(https://www.ngdc.noaa.gov/eog/dmsp/downloadv4composites.html),其空间分辨率为1km,该夜晚灯光数据已经去除极光的影响,选取其2013年年合成数据的stable_lights图层。本实施例假定夜晚灯光数据像元值大于0的区域不能看到极光。图8为冰岛2013年夜晚灯光数据,其中,右下角圆形区域陆地部分为本实验研究区。将初步极光观测候选区和研究区内夜晚灯光数据叠加(图9),选取试验区内能看到3个极光分布点,同时夜晚灯光数据像元值等于0的区域,取其交集,即可得到最终极光观测候选区(图10)。本实施例结合高程数据和夜晚灯光遥感数据,得到的三个极光分布点的最终观测候选区。相比于现有的极光观测区域预报方案,以本实施例的研究区所处的冰岛为例,其极光预报一般通过冰岛气象局发布(http://en.vedur.is/weather/forecasts/aurora/),具体预报形式为整个冰岛的极光活动强度(0到9,值约大极光活动强度越高,极光观测的可能性越高)(图11),但冰岛气象局的极光预报中,仅仅给出了云覆盖的空间分布,其并未给出整个冰岛不同区域的极光观测候选区。虽然现在有极光预测的空间分布数据,例如美国海洋和大气管理局(nationaloceanicandatmosphericadministration,noaa)的30分钟极光预测空间分布数据(https∶//www.swpc.noaa.gov/products/aurora-30-minute-forecast),其像元值从0到100,表示为可见极光的可能性。但其只预报了极光的空间分布,其空间分辨率也比较粗(0.32846715度*0.3515625度),并未给出极光观测候选区。比如,以2018年1月26日noaa的30分钟极光预测数据为例,其空间分布如图12所示。综上所述,本发明能得到相比于现有未考虑地形的方案得到更优的极光观测候选区。以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。当前第1页12当前第1页12