煤层脉动水力压裂振幅和频率设计方法与流程

文档序号:15983044发布日期:2018-11-17 00:33阅读:738来源:国知局

本发明涉及煤层脉动水力压裂储层改造技术,具体涉及煤层脉动水力压裂振幅和频率设计方法。

背景技术

煤层气是一种重要的非常规油气资源,其开发和利用越来越受到世界各国的关注和重视。我国煤层气储量丰富,高达36.8´1012m3,是仅次于俄罗斯和加拿大的全球第三大煤层气储量国。如果能高效开发煤层气资源,对我国能源供给意义重大。煤层气的主要成分为甲烷,当其空气浓度达到5%~16%时,遇明火就会爆炸,这也是煤矿瓦斯爆炸事故发生的根本原因。另外,如将煤层气直接排放到大气中,其温室效应约为二氧化碳的21倍,对生态环境破坏作用极强。所以,在采煤之前如果能先开采煤层气,对煤矿安全生产和环境保护意义重大。

水力压裂是煤层气开采的一项有效技术措施,据统计我国日产量超过1000m3的煤层气井都使用过水力压裂增产措施。煤层气井开展水力压裂作业后,能够在井底附近形成复杂裂缝网络,增加煤层气井泄压面积,降低流体渗流阻力,极大地改善煤层渗流条件,从而有效增加煤层气井产能。

煤层水力压裂目前广泛采用常规水力压裂技术,该技术尽管在煤储层压裂改造过程中取得较好的效果,但也经常出现一些工程技术问题,影响了煤层的压裂改造效果。例如,压裂改造后经常无法按照设计形成长缝和有效的裂缝网络,只在井底附近形成小范围裂缝延伸,无法有效增加压裂改造体积;或者在压裂过程中,由于煤层压裂液滤失严重,而压裂参数设计不合理经常导致裂缝砂堵,泵压升高增加了施工风险,不利于安全施工顺利进行。

脉动水力压裂技术,是在煤层常规水力压裂技术基础上提出的一种新型水力压裂技术,克服了常规水力压裂技术在煤层压裂开发中出现的技术问题。脉动水力压裂是利用周期性的脉动压力变化实现对煤层的压裂施工作业,并且在周期性的脉动压力作用下,对煤层岩石造成损伤,使煤岩强度降低,在压裂载荷下更易于发生破坏,从而有效增加复杂裂缝网络沟通煤层的面积,使压裂改造体积大幅增加,更有效的提高煤层渗透率,达到提高煤层气井产能的目的,并且降低了施工压力和施工风险,有利于安全施工。

但目前煤层脉动水力压裂的压裂施工参数比如脉动压裂的振幅和频率都是根据现场经验选取,没有相应的理论指导依据和相应设计方法,这样在不同煤层区块应用效果差异明显,有的区块压裂改造增产效果显著,有的区块则因参数设计不合理而导致压裂效果较差,因此需要提供一种煤层脉动水力压裂的施工参数设计方法,给出不同区块适用的脉动压裂振幅和频率数值,提高脉动水力压裂的储层改造效果和施工成功率。



技术实现要素:

本发明的目的是提供煤层脉动水力压裂振幅和频率设计方法,这种煤层脉动水力压裂振幅和频率设计方法解决煤层脉动水力压裂过程施工参数的合理选取问题。

本发明解决其技术问题所采用的技术方案是:这种煤层脉动水力压裂振幅和频率设计方法:

步骤一、开展预期压裂煤层现场取芯,应用获取的煤岩岩芯开展力学参数测试,获取煤岩基本力学参数、原地应力数据、孔隙压力数据,同时开展煤岩岩芯周期循环载荷压缩的破坏实验,模拟并掌握脉动载荷下的煤岩破坏规律,回归得到脉动载荷下的煤岩强度理论模型;

步骤二、应用comsol商用有限元软件,建立煤层脉动水力压裂有限元模型,煤层脉动水力压裂有限元模型中包含压裂井井身结构信息、煤层各种割理、天然裂缝结构信息,在煤层脉动水力压裂有限元模型中预设脉动水力压裂裂缝尺寸和裂缝形态,煤岩力学参数、原地应力数据、孔隙压力数据以步骤一中实验结果为依据;

步骤三、应用步骤二建立的煤层脉动水力压裂有限元模型,对压裂井施加脉动压力,在某个脉动频率和振幅施工参数下模拟计算煤层应力场,确定煤层脉动水力压裂扰动应力场分布;

步骤四、根据步骤一中得到的脉动载荷下的煤岩强度理论模型,分析在步骤三中煤层脉动水力压裂扰动应力场分布下能够产生破坏的煤层区域,确定脉动水力压裂改造形成有效破坏区域的煤层面积大小,产生破坏的煤岩是能形成裂缝的煤岩,进而确定脉动水力压裂改造形成的裂缝网络面积;

步骤五、重复步骤三、四,计算不同脉动压裂振幅和频率所能产生的裂缝网络面积,在保证施工管柱和设备安全的极限压力下,以获取最大裂缝网络面积为目标,确定最优脉动压裂振幅和频率参数;或者以给定的压裂改造裂缝网络面积为前提,计算分析选取最适合的脉动压裂振幅和频率参数组合。

上述方案中步骤二具体为:应用comsol商用有限元软件,建立煤层脉动水力压裂有限元模型,煤层脉动水力压裂有限元模型中同时建立压裂井的模型、压裂煤层割理系统模型以及天然裂缝分布模型,同时预设脉动水力压裂所要形成裂缝尺寸和裂缝形态,给煤层脉动水力压裂有限元模型施加约束条件,并且在模型边界添加理想界面层消除脉动应力波反射的影响;

将步骤一得到的煤岩力学参数、原地应力数据、孔隙压力数据输入煤层脉动水力压裂有限元模型中,输入参数以后对模型进行网格划分,并对局部区域进行网格加密处理。

本发明具有以下有益效果:

1、通过本发明提供的煤层脉动水力压裂振幅和频率,可以使煤层脉动水力压裂施工后有效增加裂缝网络的面积,增加裂缝与煤层的有效沟通范围,最大限度的增加煤层压裂改造体积,有效提高煤层气井产能;

2、通过本发明提供的煤层脉动水力压裂振幅和频率,可以降低煤层脉动水力压裂过程依靠经验盲目增加脉动载荷振幅产生施工压力过高的风险,提高施工的安全性;

3、通过本发明提供的煤层脉动水力压裂振幅和频率,可以在获取预期压裂改造面积的前提下,优选施工的脉动载荷振幅和频率,可以较小施工压力获取预期压裂效果,降低施工安全风险;

4、通过本发明提供的煤层脉动水力压裂振幅和频率,可以在获取预期压裂改造面积的前提下,降低施工压力,对节约压裂施工成本作用明显;

5、本发明提供的煤层脉动水力压裂振幅和频率设计方法根据要进行压裂施工目的区块煤岩岩芯力学实验结果进行设计,可以对不同区块的煤岩进行力学参数测试,通过改变力学参数来改变脉动载荷振幅和频率设计结果,从而确保该方法设计的施工参数适用于不同区块。

具体实施方式

下面对本发明作进一步的说明:

这种煤层脉动水力压裂振幅和频率设计方法如下:

步骤1、开展预期压裂煤层现场取芯,制备力学参数测试标准岩样,包括25*50mm和50*25mm岩芯,应用获取的煤岩岩芯开展包括单轴、三轴压缩和巴西劈裂以及变角剪切等力学参数测试,获取煤岩单轴和三轴抗压强度、弹性模量、泊松比和抗拉强度等基本力学参数,应用全尺寸岩样加工实验试件开展地应力测试实验,获取原地应力数据,根据密度测井等数据计算垂向地应力。

用加工好的标准煤岩岩芯进行周期循环载荷压缩破坏实验,测试不同加载频率和振幅下煤岩破坏强度,根据实验数据回归得到周期加载频率和振幅下煤岩强度的理论模型;。

步骤2、应用comsol等商用有限元软件,建立煤层脉动水力压裂有限元模型,模型中同时建立压裂井的模型、压裂煤层割理系统模型以及天然裂缝分布模型,同时预设脉动水力压裂所要形成裂缝尺寸和裂缝形态,给模型施加约束条件,并且在模型边界添加理想界面层消除脉动应力波反射的影响。

煤层脉动水力压裂有限元模型中煤岩力学参数、原地应力数据以及孔隙压力数据等以步骤1中实验结果为依据进行输入,输入参数以后对模型进行网格划分,并对局部区域进行网格加密处理。

步骤3、应用步骤2建立的有限元模型,对压裂井在井筒和水力裂缝中施加脉动压力,在某个脉动频率和振幅施工参数下模拟计算煤层应力场,绘制煤层脉动水力压裂扰动应力场分布,包括不同主应力的分布规律。

步骤4、根据步骤1中得到的脉动载荷下的煤岩强度理论模型,在步骤3脉动水力压裂扰动应力场有限元模拟结果中以强度为临界条件,绘制脉动水力压裂改造形成有效破坏区域的煤层面积大小,产生破坏的煤岩既是能形成裂缝的煤岩,进而可以确定脉动水力压裂改造形成的裂缝网络面积。

步骤5、重复步骤3、4,计算不同脉动压裂振幅和频率所能产生的裂缝网络面积。在保证施工管柱和设备安全的极限压力下,以获取最大裂缝网络面积为目标,确定最优脉动压裂振幅和频率参数。或者以给定的压裂改造裂缝网络面积为前提,计算分析选取最适合的脉动压裂振幅和频率参数组合。

本发明用于在煤层脉动水力压裂过程确定合理的脉动载荷振幅和频率,从而使煤层脉动水力压裂获得更好的压裂改造效果,增加施工成功率,降低施工安全风险。既可以防止由于脉动振幅和频率设计过小而产生的压裂改造效果较差,也可以降低盲目增加脉动载荷振幅和频率所带来的施工安全风险和施工成本增加。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1