用于RAW格式图像的CWT-QIM数字盲水印算法的制作方法

文档序号:17245377发布日期:2019-03-30 08:47阅读:370来源:国知局
用于RAW格式图像的CWT-QIM数字盲水印算法的制作方法

本发明涉及一种用于raw格式图像的cwt-qim数字盲水印算法,属于图像处理技术领域。



背景技术:

当前,得益于数码相机和网络技术的不断发展,高分辨率数码图像视频的存储、处理、传播和使用日益频繁,由此涉及的图像版权问题也层出不穷;传统的数字水印根据嵌入的位置的不同可以分成空域和变化域水印算法,前者是指直接在原信息的空间域嵌入水印,而后者则是在变换域进行水印的嵌入操作;然而,传统数字水印不同程度存在下列一种或多种缺陷:一是水印的嵌入是在硬件的嵌入,鲁棒性不够强,尤其是随着相机设备的升级,图像尺寸由720p增大到2k乃至4k,针对此类高清图像缩放的鲁棒性考虑不完善;二是目前网络日益发展,用户需要针对已经拍摄或者处理好的raw格式图像进行额外的水印嵌入,而现研究只是在cfa过程中进行水印嵌入,得到的是嵌入水印的jpeg图像,原有的raw图像中并未嵌入水印;三是在没有原始图像的情况下,当水印图像受到诸如分辨率变化操作等攻击时,通常都无法进行水印信息的检测和提取,也就不具备对类似袭击的鲁棒性。



技术实现要素:

本发明为提高raw图像对几何攻击和组合攻击的抵抗能力,利用dt-cwt(dual-treecomplexwavelettransform)域的方向性结合dct(discretecosinetransform)的稳健性,提出一种用于raw格式图像的cwt-qim数字盲水印算法,raw图像的低频系数对压缩和几何变化具有很强的鲁棒性,但是人眼视觉系统对低频变化的感知要大于对高频变化的感知,因此,对水印嵌入位置的选择,本质上是在感知性和鲁棒性两者之间的一种权衡折中,在本发明算法中将水印嵌入在人眼感知度较低的蓝色b通道的低频分量中,这样即保证了水印的鲁棒性,同时利用蓝色b通道增强了水印的不可感知性。

本发明所采用的技术方案为:

用于raw格式图像的cwt-qim数字盲水印算法,包括水印的嵌入过程和水印的提取过程,具体步骤如下:

(1)水印的嵌入过程

步骤a.水印图像的生成

假设待嵌入raw图像的大小为m×n,原始水印信息为一维向量w,根据光栅扫描顺序,原始水印信息w描述为一维向量的形式:

w={w0,w1,…,wl}式1

其中它的每个元素wi满足wi∈{-1,1},根据水印信息的长度对w利用随机数产生器生成一个长为l,大小为原始水印信息w同等大小的随机数矩阵,记为k;

k={k0,k1,…,kl}式2

将得到的l个水印信号wi与密钥ki实行线性调制,得到一个调制后的含水印的信号即:

其中,是由l个组成的一维向量,大小如原始水印信息w大小一致,为m、n分别是dct分块的块尺寸与水印嵌入的dt-cwt的变换层数;

步骤b.选择嵌入区域

将原始raw图像插值提取蓝色b通道的图像矩阵对b通道的图像矩阵使用n次dt-cwt变换,而每次dt-cwt变换会产生一个低频子带和6个不同方向的高频子带,6个不同方向分别为±15°、±45°和±75°,将水印隐藏在b通道第n层方向互相正交的两个高频子带选择两个方向垂直,±45°,d取1,2的子带作为嵌入的载体,划分两个子带的取模矩阵,对大小为的子带等比例的划分为s块大小为m×m且不重复的方块矩阵,其中s大小如式4所示:

步骤c.dct变换

通过对d∈{1,2}取模后获得矩阵按照m×m大小的块连续划分整个对整个的每个块按式5、式6去分别计算它的dct系数矩阵dk;

采样提取dk的直流系数dk,具体如式7描述:

dk=dk(1,1)式7

其中k代表块的编号,将每块的直流系数dk按式8合成矩阵此时,是大小为的直流系数矩阵,代表子带每个块最稳定不易修改的能量分布;

步骤d.基于矢量量化调制的嵌入

对俩个子带分别进行分块dct,得到俩个直流矩阵相比得到比例系数矩阵l

其数学描述如式9所示:

将坐标轴等间隔划分成a区间集与b区间集,区间间隔为δ;规定a区间集代表1,b区间集代表0;根据水印值是0或1,动态调整待嵌入水印的系数值lx,y,使其等于离自己最近的对应区间内的中间值;数学上的表示为式10、式11;

其中l′描述了修改后的l值,也就是水印嵌入后±45°方向的新比例矩阵;

将经过n次dt-cwt变换的分割为s块大小m×m的矩阵k∈{1,2...s};对块矩阵整块的放大倍得到矩阵;数学上的表示为式13:

从上到下、从左向右依次的修改s个k∈{1,2...s}矩阵,按照式12的排列修改原子带方向系数矩阵:

获取修改后的b通道矩阵值,利用上述得到的n层小波系数矩阵再结合未修改的其他层系数矩阵bl通过逆dt-cwt变换得到b通道矩阵,至此得到含水印图像;如式14所示:

(2)水印的提取过程

信息接受方从接收到的含水印图像中插值提取出b通道系数矩阵,根据嵌入方共享的子带方向d、嵌入层数n、分块大小m、量化步长δ,可以得到嵌入的水印图案,进而由接收方利用密钥矩阵k来准确恢复水印图像,记为k1,k2,…,kq;假设x为一幅待提取水印的rgb图像,尺寸为m×n,接受方根据已知的嵌入参数信息通过对相应的逆操作进而获得水印图像其向量表示为具体实现步骤如下:

步骤a.将插值提取的b通道系数矩阵经过n层dt-cwt变换得到bl提取嵌入方向d的高频子带作为水印检测区域,这里d取1、2;

步骤b.分别对进行大小为m×m的dct分块,由式5得到相应dct系数矩阵d1、d2,再经式7、式8从系数矩阵d1、d2提取稳定的直流系数矩阵

步骤c.根据式9计算比例系数矩阵l,记为li,i=1,2...,q,其中δ为qim嵌入的量化步长,大小一般取0.5,1,1.5,2...,l代表着q组变换域比例系数,然后,根据qim逆变换式15得出位序列其中符号函数mod(x,y)定义为x对y的取模函数,round(x)定义为找寻对向量x中每个元素朝最近的方向取整数部分,并返回与x同维的向量;

步骤d.最后用与嵌入时相同密钥k解析水印得到原始水印w0,具体数学表示如式16所示:

作为本发明的进一步优选,在光栅扫描原始水印信息的过程中采用纠错编码技术,用以提高水印信息解码的正确率。

本发明的有益效果在于:raw图像的低频系数对压缩和几何变化具有很强的鲁棒性,但是人眼视觉系统对低频变化的感知要大于对高频变化的感知,因此,对水印嵌入位置的选择,本质上是在感知性和鲁棒性两者之间的一种权衡折中,在本发明算法中将水印嵌入在人眼感知度较低的蓝色b通道的低频分量中,这样即保证了水印的鲁棒性,同时利用蓝色b通道增强了水印的不可感知性;本发明算法将水印信息嵌入到原始raw图像经过dt-cwt变换的部分低频子带系数中,结合dct分块与dt-cwt相结合的嵌入思想,利用嵌入区域的方向性和分块的鲁棒性使用qim整体修改分块区域,既保证了水印鲁棒性,避免了逆dct变化的马赛克现象;相比同类算法能够抵抗更强的几何攻击、综合攻击,尤其在抗缩放、抗jpeg压缩能力更为突出;经大量的实验验证,本发明算法具备优良的鲁棒性和透明性,可以有效抵抗jpeg图像压缩、高斯噪声、中值滤波、椒盐噪声、缩放、旋转、裁剪等图像攻击,提升了数字水印算法的性能,实现了水印信息量化嵌入,且不需原载体图像即可盲提取,能够方便有效地应用于数字内容认证或数字版权保护等领域中。

附图说明

图1为本发明算法流程示意图;

图2为dt-cwt变换图;

图3为dct分块处理示意图;

具体实施方式

下面结合附图和实施例对本发明做具体的介绍。

如图1所示:本实施例是一种用于raw格式图像的cwt-qim数字盲水印算法,包括水印的嵌入过程和水印的提取过程,具体步骤如下:

(1)水印的嵌入过程

本实施过程总体思路:在原图像经过dt-cwt变换后的低频方向子带系数中,筛选出合适的两个方向子带系数,然后对这子带系数区域进行分块dct并提取各个块的直流系数,最后利用设定好的参数在两个子带直流系数比中进行水印的qim嵌入。

步骤a.水印图像的生成

水印生成过程可以分解为水印信息编码和水印信号的调制;假设待嵌入raw图像的大小为m×n,原始水印信息为一维向量w,为了避免原始水印的直接嵌入造成的安全性隐患,根据光栅扫描顺序,原始水印信息w描述为一维向量的形式:

w={w0,w1,…,wl}式1

其中它的每个元素wi满足wi∈{-1,1},该过程可采用纠错编码技术,以提高水印信息解码的正确率;根据水印信息的长度对w利用随机数产生器生成一个长为l,大小为原始水印信息w同等大小的随机数矩阵,记为k;

k={k0,k1,…,kl}式2

将得到的l个水印信号wi与密钥ki实行线性调制,得到一个调制后的含水印的信号即:

其中,是由l个组成的一维向量,大小如原始水印信息w大小一致,为m、n分别是dct分块的块尺寸与水印嵌入的dt-cwt的变换层数;

步骤b.选择嵌入区域

由于人眼对蓝色通道的感知度较低,因此将原始raw图像插值提取蓝色b通道的图像矩阵对b通道的图像矩阵使用n次dt-cwt变换,而每次dt-cwt变换会产生一个低频子带和6个不同方向的高频子带,6个不同方向分别为±15°、±45°和±75°,如图2所示,考虑到相互正交的方向之间相互影响最小,为了增强水印鲁棒性;本实施例将水印隐藏在b通道第n层方向互相正交的两个高频子带选择两个方向垂直,本实施例中选择±45°两个方向,d取1,2的子带作为嵌入的载体,划分两个子带的取模矩阵,对大小为的子带等比例的划分为s块大小为m×m且不重复的方块矩阵,其中s大小如式4所示:

步骤c.dct变换

如图3所示进行分块处理,其中,蓝色网格是子带(d取1和2),绿色方块为(k∈{1,2...}),通过对d∈{1,2}取模后获得矩阵按照绿色方块m×m大小的块连续划分整个蓝色网格对整个的每个绿色方块按式5、式6去分别计算它的dct系数矩阵dk;

为了更好表示每个绿色方块的低频能量信息,采样提取dk的直流系数dk,具体如式7描述:

dk=dk(1,1)式7

其中k代表块的编号,将每个绿色方块的直流系数dk按式8合成矩阵此时,是大小为的直流系数矩阵,代表子带每个块最稳定不易修改的能量分布;

步骤d.基于矢量量化调制的嵌入

对俩个子带分别进行分块dct,得到俩个直流矩阵相比得到比例系数矩阵l其数学描述如式9所示:

将坐标轴等间隔划分成a区间集与b区间集,区间间隔为δ;规定a区间集代表1,b区间集代表0;根据水印值是0或1,动态调整待嵌入水印的系数值lx,y,使其等于离自己最近的对应区间内的中间值;数学上的表示为式10、式11;

其中l′描述了修改后的l值,也就是水印嵌入后±45°方向的新比例矩阵;

将经过n次dt-cwt变换的分割为s块大小m×m的矩阵k∈{1,2...s};对块矩阵整块的放大倍得到矩阵;数学上的表示为式13:

从上到下、从左向右依次的修改s个k∈{1,2...s}矩阵,按照式12的排列修改原子带方向系数矩阵:

为了进一步获得修改后的raw图像,首先要获取修改后的b通道矩阵值,利用上述得到的n层小波系数矩阵再结合未修改的其他层系数矩阵bl通过逆dt-cwt变换得到b通道矩阵,至此得到含水印图像;如式14所示:

(2)水印的提取过程

信息接受方从接收到的含水印图像中插值提取出b通道系数矩阵,根据嵌入方共享的子带方向d、嵌入层数n、分块大小m、量化步长δ,可以得到嵌入的水印图案,进而由接收方利用密钥矩阵k来准确恢复水印图像,记为k1,k2,…,kq;假设x为一幅待提取水印的rgb图像,尺寸为m×n,接受方根据已知的嵌入参数信息通过对相应的逆操作进而获得水印图像其向量表示为具体实现步骤如下:

步骤a.将插值提取的b通道系数矩阵经过n层dt-cwt变换得到bl提取嵌入方向d的高频子带作为水印检测区域,这里d取1、2;

步骤b.按附图3所示,分别对进行大小为m×m的dct分块,由式5得到相应dct系数矩阵d1、d2,再经式7、式8从系数矩阵d1、d2提取稳定的直流系数矩阵

步骤c.根据式9计算比例系数矩阵l,记为li,i=1,2...,q,其中δ为qim嵌入的量化步长,大小一般取0.5,1,1.5,2...,l代表着q组变换域比例系数,然后,根据qim逆变换式15得出位序列其中符号函数mod(x,y)定义为x对y的取模函数,round(x)定义为找寻对向量x中每个元素朝最近的方向取整数部分,并返回与x同维的向量;

步骤d.最后用与嵌入时相同密钥k解析水印得到原始水印w0,具体数学表示如式16所示:

本发明的有益效果在于,raw图像的低频系数对压缩和几何变化具有很强的鲁棒性,但是人眼视觉系统对低频变化的感知要大于对高频变化的感知,因此,对水印嵌入位置的选择,本质上是在感知性和鲁棒性两者之间的一种权衡折中,在本发明算法中将水印嵌入在人眼感知度较低的蓝色b通道的低频分量中,这样即保证了水印的鲁棒性,同时利用蓝色b通道增强了水印的不可感知性;本发明算法将水印信息嵌入到原始raw图像经过dt-cwt变换的部分低频子带系数中,结合dct分块与dt-cwt相结合的嵌入思想,利用嵌入区域的方向性和分块的鲁棒性使用qim整体修改分块区域,既保证了水印鲁棒性,避免了逆dct变化的马赛克现象;相比同类算法能够抵抗更强的几何攻击、综合攻击,尤其在抗缩放、抗jpeg压缩能力更为突出;经大量的实验验证,本发明算法具备优良的鲁棒性和透明性,可以有效抵抗jpeg图像压缩、高斯噪声、中值滤波、椒盐噪声、缩放、旋转、裁剪等图像攻击,提升了数字水印算法的性能,实现了水印信息量化嵌入,且不需原载体图像即可盲提取,能够方便有效地应用于数字内容认证或数字版权保护等领域中。

以上所述仅是本发明专利的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明专利原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明专利的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1