摄像头标定方法、装置、电子设备和计算机可读存储介质与流程

文档序号:17363730发布日期:2019-04-09 22:16阅读:171来源:国知局
摄像头标定方法、装置、电子设备和计算机可读存储介质与流程

本申请涉及影像技术领域,特别是涉及一种摄像头标定方法、装置、电子设备、计算机可读存储介质。



背景技术:

摄像头在出厂之前,需要对摄像头进行标定得到摄像头的标定参数,并对标定参数进行合格测试,从而摄像头可以根据合格标定参数对图像进行处理,使得处理后的图像可以还原三维空间中的物体。然而,传统技术中存在摄像头标定准确性低的问题。



技术实现要素:

本申请实施例提供一种摄像头标定方法、装置、电子设备和计算机可读存储介质,可以提高摄像头标定的准确性。

一种摄像头标定方法,包括:

获取摄像头模组中第一摄像头与第二摄像头之间的第一平移矩阵,及第三摄像头与所述第一摄像头之间的第二平移矩阵;

基于所述第一平移矩阵和第二平移矩阵计算所述摄像头模组中三个摄像头所形成的三角形中的三个角度值;

当三个所述角度值中存在属于预设角度区间的角度值时,则确定标定测试通过。

一种摄像头标定装置,包括:

获取模块,用于获取摄像头模组中第一摄像头与第二摄像头之间的第一平移矩阵,及第三摄像头与所述第一摄像头之间的第二平移矩阵;

计算模块,用于基于所述第一平移矩阵和第二平移矩阵计算所述摄像头模组中三个摄像头所形成的三角形中的三个角度值;

确定模块,用于当三个所述角度值中存在属于预设角度区间的角度值时,则确定标定测试通过。

一种电子设备,包括存储器及处理器,所述存储器中储存有计算机程序,所述计算机程序被所述处理器执行时,使得所述处理器执行如下步骤:

获取摄像头模组中第一摄像头与第二摄像头之间的第一平移矩阵,及第三摄像头与所述第一摄像头之间的第二平移矩阵;

基于所述第一平移矩阵和第二平移矩阵计算所述摄像头模组中三个摄像头所形成的三角形中的三个角度值;

当三个所述角度值中存在属于预设角度区间的角度值时,则确定标定测试通过。

一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如下步骤:

获取摄像头模组中第一摄像头与第二摄像头之间的第一平移矩阵,及第三摄像头与所述第一摄像头之间的第二平移矩阵;

基于所述第一平移矩阵和第二平移矩阵计算所述摄像头模组中三个摄像头所形成的三角形中的三个角度值;

当三个所述角度值中存在属于预设角度区间的角度值时,则确定标定测试通过。

上述摄像头标定方法、装置、电子设备和计算机可读存储介质,通过获取摄像头模组中第一摄像头与第二摄像头之间的第一平移矩阵,及第三摄像头与所述第一摄像头之间的第二平移矩阵,基于第一平移矩阵和第二平移矩阵计算摄像头模组中三个摄像头所形成的三角形中的三个角度值,当三个角度值中存在属于预设角度区间的角度值时,则确定标定测试通过。通过将摄像头模组中三个摄像头所形成的三角形中的三个角度值与预设角度区间进行比对,以检验摄像头模组标定结果是否合格,可以提高摄像头标定的准确性。

附图说明

为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1为一个实施例中摄像头标定方法的应用环境图;

图2为一个实施例中摄像头标定方法的流程图;

图3为一个实施例中摄像头模组包含的三个摄像头的示意图;

图4为一个实施例中三个摄像头形成的三角形的示意图;

图5为一个实施例中获取第一平移矩阵和第二平移矩阵的流程图;

图6为另一个实施例中摄像头标定方法的流程图;

图7为一个实施例的摄像头标定装置的结构框图;

图8为一个实施例中电子设备的内部结构示意图;

图9为一个实施例中图像处理电路的示意图。

具体实施方式

为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。

可以理解,本申请所使用的术语“第一”、“第二”等可在本文中用于描述各种元件,但这些元件不受这些术语限制。这些术语仅用于将第一个元件与另一个元件区分。举例来说,在不脱离本申请的范围的情况下,可以将第一摄像头称为第二摄像头,且类似地,可将第二摄像头称为第一摄像头。第一摄像头和第二摄像头两者都是摄像头,但其不是同一摄像头。

图1为一个实施例中摄像头标定方法的应用环境示意图。如图1所示,该应用环境包括电子设备110。其中电子设备110具有第一摄像头111、第二摄像头112和第三摄像头113。第一摄像头111、第二摄像头112和第三摄像头113的机械设置排列方式可以是:第一摄像头111、第二摄像头112、第三摄像头113依次排列,如图1a所示;或第一摄像头111、第三摄像头113、第二摄像头112依次排列,如图1b所示;或第二摄像头112、第一摄像头111、第三摄像头113依次排列,如图1c所示;或者第二摄像头112、第三摄像头113、第一摄像头111依次排列;或第三摄像头113、第二摄像头112、第一摄像头111依次排列;或者第三摄像头113、第一摄像头111、第二摄像头112。

其中,第一摄像头111、第二摄像头112和第三摄像头113可以但不限于是彩色摄像头、黑白摄像头、长焦摄像头、广角摄像头或深度摄像头中一种或多种。深度摄像头可以为飞行时间测距(timeofflight,tof)摄像头或是结构光摄像头。

如图2所示,为本发明一个实施例中摄像头标定方法的流程图,本实施例中的摄像头标定方法,以运行于图1中的电子设备上为例进行描述。如图2所示,摄像头标定方法包括步骤202至步骤206。其中:

步骤202,获取摄像头模组中第一摄像头与第二摄像头之间的第一平移矩阵,及第三摄像头与第一摄像头之间的第二平移矩阵。

摄像头模组是指包含至少三个摄像头的组件。摄像头模组可以内置或外置于电子设备,从而电子设备可以通过摄像头模组来采集图像。摄像头模组可以是电子设备的前置摄像头模组,也可以是后置摄像头模组。本申请实施例以摄像头模组包含三个摄像头进行说明,具体地,摄像头模组包含的第一摄像头、第二摄像头和第三摄像头可以但不限于是彩色摄像头、黑白摄像头、长焦摄像头、广角摄像头或深度摄像头中一种或多种。例如,摄像头模组中第一摄像头可以为彩色摄像头、第二摄像头可以为黑白摄像头、第三摄像头可以为深度摄像头;摄像头模组第一摄像头也可以是深度摄像头、第二摄像头为彩色摄像头、第三摄像头为长焦摄像头,等不限于此。

摄像头的标定处理是指对摄像头成像的几何模型中的参数进行求解的操作,通过摄像头成像的几何模型可以使拍摄的图像还原空间中的物体。单个摄像头的标定信息可以包括该摄像头的内参、外参、畸变系数等;双摄像头的标定信息还包括了两个摄像头之间的外参,其中,外参包含旋转矩阵和平移矩阵。电子设备可以在摄像头模组进行标定处理后,获取标定处理得到的第一摄像头和第二摄像头之间的第一平移矩阵、及第一摄像头和第三摄像头之间的第二平移矩阵。具体地,第一平移矩阵是由第一摄像头经过标定得到的相对标定物的平移矩阵(即标定物在世界坐标系的坐标转换到第一摄像头的摄像头坐标系的坐标的平移矩阵)及第二摄像头经过标定得到的相对标定物的平移矩阵(即标定物在世界坐标系的坐标转换到第二摄像头的摄像头坐标系的坐标的平移矩阵)计算得到的。第二平移矩阵是由第一摄像头经过标定得到的相对标定物的平移矩阵及第三摄像头经过标定得到的相对标定物的平移矩阵得到的。

步骤204,基于第一平移矩阵和第二平移矩阵计算摄像头模组中三个摄像头所形成的三角形中的三个角度值。

摄像头模组中的三个摄像头处于空间中的三个位置,可以在空间中形成一个三角形。具体地,形成三角形的各个点可以是三个摄像头分别对应的摄像头的中心。电子设备基于第一平移矩阵和第二平移矩阵计算摄像头模组中三个摄像头所形成的三角形中的三个角度值。具体地,电子设备可以根据第一平移矩阵和第二平移矩阵确定三个摄像头的相对位置关系,进而根据第一平移矩阵和第二平移矩阵中包含的系数计算所形成的三角形中的三个角度值。电子设备也可以以任一摄像头为原点建立坐标系,例如,可以以第一摄像头为原点建立三维坐标系,进而根据第一平移矩阵确定第二摄像头在三维坐标系中的位置,及根据第二平移矩阵确定第三摄像头在三维坐标系中的位置,进而根据三个摄像头之间的位置信息计算所形成的三角形中的三个角度值。

步骤206,当三个角度值中存在属于预设角度区间的角度值时,则确定标定测试通过。

预设角度区间可以根据摄像头模组的期望摆放位置,以及允许误差范围进行设定。例如,当允许误差范围为±3度时,若摄像头模组的期望摆放位置为三个摄像头在同一直线上,则预设角度区间可以为177度至183度;若摄像头模组的期望摆放位置为三个摄像头形成等边三角形,则预设角度区间为57度至63度;若摄像头模组的期望摆放位置为三个摄像头形成直角三角形,则预设角度区间可以为87度至93度,等不限于此。其中,允许误差范围可以根据实际应用需求设定。例如,允许误差范围可以是±2度、±3度、±4度、±度等,也可以是-1度至3度、-2度至5度等不限于此。

电子设备可以在三个角度值中存在属于预设角度区间的角度值时,则确定标定测试通过。具体地,三个角度值存在属于预设角度区间的角度值,即预设角度区间包含至少一个角度值。三个角度值中存在属于预设角度区间的角度值时,则摄像头标定结果的实际误差在误差允许范围内,从而可以确定标定测试通过。电子设备还可以标定测试通过时,生成标定测试通过的提示信号,该提示信号可用于提示电子设备摄像头标定结果通过标定测试,电子设备可以根据该提示信号将摄像头标定处理得到的标定信息进行保存。

本申请实施例提供的摄像头标定方法,通过获取摄像头模组中第一摄像头与第二摄像头之间的第一平移矩阵,及第三摄像头与第一摄像头之间的第二平移矩阵,基于第一平移矩阵和第二平移矩阵计算摄像头模组中三个摄像头所形成的三角形中的三个角度值,当三个角度值中存在属于预设角度区间的角度值时,则确定标定测试通过。可以避免只对第一摄像头和第二摄像头之间的距离信息、及第一摄像头和第三摄像头之间的距离信息进行标定测试时,忽视了第二摄像头和第三摄像头之间的位置关系而导致标定结果不准确的问题,提高了摄像头标定的准确性。

在一个实施例中,提供的摄像头标定方法还包括:当三个角度值中不存在属于预设角度区间的角度值时,则确定标定测试失败。

三个角度值中不存在预设角度区间的角度值,即三个角度值都不在预设角度区间的范围内。电子设备可以在当三个角度值都不在预设角度区间内时,判定摄像头标定结果的实际误差超过误差允许范围,从而确定标定测试失败。电子设备可以还可以标定测试失败时,生成标定测试失败的提示信号,该提示信号用于指示电子设备摄像头标定结果未通过标定测试,需对摄像头模组进行第二次标定处理。

电子设备通过将摄像头模组中三个摄像头所形成的三角形中的三个角度值与预设角度区间进行比对,以检验摄像头模组标定结果是否合格,可以提高摄像头标定的准确性。

在一个实施例中,提供的摄像头标定方法中基于第一平移矩阵和第二平移矩阵计算摄像头模组中三个摄像头所形成的三角形中的三个角度值之前,还包括:获取第一平移矩阵与第一预设矩阵的第一偏移值,及第二平移矩阵与第二预设矩阵之间的第二偏移值;当第一偏移值小于第一预设偏移值及第二偏移值小于第二预设偏移值时,则执行基于第一平移矩阵和第二平移矩阵计算摄像头模组中三个摄像头所形成的三角形中的三个角度值的操作。

第一预设矩阵为第一摄像头和第二摄像头之间的期望偏移矩阵。第二预设矩阵为第一摄像头和第三摄像头之间的期望偏移矩阵。具体地,第一预设矩阵和第二预设矩阵可以是工程师在配置摄像头设定的摄像头偏移距离,例如,可以是摄像头模组设计图纸中标识的摄像头之间的偏移距离。电子设备可以获取第一平移矩阵与第一预设矩阵的第一偏移值,以及第二平移矩阵与第二预设矩阵的第二偏移值。

第一预设偏移值和第二预设偏移值可以根据实际应用需求进行设定。第一偏移值小于第一预设偏移值,则说明第一摄像头和第二摄像头的标定结果的误差在误差允许范围内;第二偏移值小于第二预设偏移值,则说明第一摄像头和第三摄像头的标定结果的误差在误差允许范围内。电子设备可以在第一偏移值小于第一预设偏移值,且第二偏移值小于第二预设偏移值时,执行基于第一平移矩阵和第二平移矩阵计算摄像头模组中三个摄像头所形成的三角形中的三个角度值的操作,进而比对三个角度值是否预设角度区间内,当存在属于预设角度区间的角度值时,则确定标定测试通过。由于可以在检测第一摄像头与第二摄像头的标定结果及第一摄像头和第三摄像头的标定结果的同时,将摄像头模组中三个摄像头所形成的三角形中的三个角度值与预设角度区间进行比对,进而得到摄像头模组标定结果的测试结果,可以提高摄像头标定的准确性。

在一个实施例中,提供的摄像头标定方法中当三个角度值中存在属于预设角度区间的角度值时,则确定标定测试通过之前,还包括:获取三个角度值中最大的角度值,作为目标角度值;当目标角度值属于预设角度区间时,则判定存在属于预设角度区间的角度值。

目标角度值即为摄像头模组中三个摄像头所形成的三角形中最大的角度值。电子设备可以获取三个角度值中最大的目标角度值,当目标角度值属于预设角度区间时,则判定存在属于预设角度区间的角度值。其中,该预设角度区间是根据摄像头模组中三个摄像头处于期望摆放位置时,三个摄像头所形成的三角形中三个角度值中的最大角度值设定的。例如,在期望摆放位置,摄像头模组中三个摄像头所形成的三角形中的三个角度为0度、0度和180度时,若允许误差范围为5度,则预设角度区间为175度至185度。

电子设备获取三个角度值中最大的角度值作为目标角度值,当目标角度值属于预设角度区间时,则判定存在属于预设角度区间的角度值,可以提高电子设备标识测试的效率。

在一个实施例中,提供的摄像头标定方法中基于第一平移矩阵和第二平移矩阵计算摄像头模组中三个摄像头所形成的三角形中的三个角度值的过程,包括:根据第一平移矩阵和第二平移矩阵确定摄像头模组中每两个摄像头之间的距离值;基于每两个摄像头之间的距离值计算三个角度值。

每两个摄像头之间的距离值是指摄像头模组中任意两个摄像头之间的距离值。电子设备根据第一平移矩阵和第二平移矩阵确定摄像头模组中每两个摄像头之间的距离值。具体地,电子设备可以根据第一平移矩阵确定第一摄像头和第二摄像头之间的距离值,及根据第二平移矩阵确定第一摄像头和第三摄像头之间的距离值,进而,由于第一平移矩阵和第二矩阵都与第一摄像头相关,则电子设备可以根据第一平移矩阵和第二平移矩阵得到的第二摄像头与第三摄像头之间的距离值。

接着,电子设备基于每两个摄像头之间的距离值计算三个角度值。具体地,电子设备在得到摄像头模组中每两个摄像头之间的距离值,即得到了由摄像头模组中三个摄像头所形成的三角形的三个边长,根据三角形的边角转化关系,电子设备可以根据每两个摄像头之间的距离值得到三个角度值。

图3为一个实施例中摄像头模组包含的三个摄像头的位置示意图。如图3所示,在一个实施例中,电子设备可以以第一摄像头111的位置为原点建立三维坐标系,进而根据第一平移矩阵(x1,y1,z1)确定第二摄像头112的位置,及根据第二平移矩阵(z2,y2,z2)确定第三摄像头113的位置。以a、b、c分别表示摄像头模组每两个摄像头之间的距离值,则可以得到:

根据上述公式(1)(2)(3)可以得到摄像头模组中每两个摄像头之间的距离值a、b、c。进而,根据三角形角度与边长的转化关系,有:

a2+b2-2ab*cosc=c2公式(4)

a2+c2-2ac*cosb=b2公式(5)

b2+c2-2bc*cosa=a2公式(6)

如图4所示,为一个实施例中三个摄像头所形成的三角形的示意图。如图4所示,a、b、c为摄像头模组中三个摄像头所形成的三角形中的三个角度值,电子设备根据上述公式(4)(5)(6)以及每两个摄像头之间的距离值可以得到三个角度值。

图5为一个实施例中获取第一平移矩阵和第二平移矩阵的流程图。如图5所示,在一个实施例中,提供的摄像头标定方法中获取摄像头模组中第一摄像头与第二摄像头之间的第一平移矩阵,及第三摄像头与第一摄像头之间的第二平移矩阵之前,还包括:

步骤502,在同一场景下,通过第一摄像头获取第一图像,通过第二摄像头获取第二图像,通过第三摄像头获取第三图像。

电子设备在同一场景下通过摄像头采集图像,具体地,电子设备可以通过第一摄像头、第二摄像头、第三摄像头对同一标定板进行拍摄,获取包含有标定图像的第一图像、第二图像和第三图像。电子设备可以同时控制第一摄像头、第二摄像头、第三摄像头采集标定图像,可以先通过第一摄像头和第二摄像头采集标定图像后,再通过第三摄像头采集标定图像等。通过在同一场景下采集得到的第一图像、第二图像和第三图像中包含的被拍摄物体均相同。其中,标定板可以是二维标定板也可以是三维标定板。三维标定板是指包含至少三个标定面的标定板。标定板为二维标定板,即只具有一个标定面的平板,标定板可以通过旋转轴旋转多个角度。当标定板为二维标定板时,电子设备可以在标定板的至少三个角度,通过第一摄像头、第二摄像头、第三摄像头对标定板进行拍摄。

步骤504,根据第一图像和第二图像进行第一标定处理,得到第一平移矩阵。

标定处理是指对摄像头成像的几何模型中的参数进行求解的操作,通过摄像头成像的几何模型可以使拍摄的图像还原空间中的物体。具体地,电子设备可以采用传统摄像头标定法、摄像头自标定方法、介于传统标定方法和自标定方法之间的张正友标定方法等进行标定处理。电子设备根据第一图像和第二图像进行第一标定处理,具体地,电子设备查找第一图像的特征点,根据特征点求取第一摄像头对应的内参、外参和畸变系数;类似地,电子设备也可以通过第二图像得到第二摄像头的内参、外参和畸变系数,进而根据第一摄像头和第二摄像头分别对应的外参计算第一摄像头和第二摄像头之间的外参,第一摄像头和第二摄像头之间的外参即包含了第一平移矩阵。

步骤506,根据第一图像和第三图像进行第二标定处理,得到第二平移矩阵。

与电子设备根据第一图像和第二图像进行第一标定处理类似,电子设备可以根据第一图像和第三图像进行第二标定处理,得到包含了第二平移矩阵的第一摄像头和第三摄像头之间的外参。在一个实施例中,因在进行第一标定处理时,电子设备已经得到第一摄像头对应的外参,在进行第二标定处理时,电子设备可以不对第一摄像头进行单目标定处理,根据第一标定处理得到的第一摄像头的外参和第二标定处理过程中得到的第三摄像头的外参计算第一摄像头和第三摄像头之间外参。

在一个实施例中,电子设备并行进行第一标定处理和第二标定处理,即电子设备可以在根据第一图像和第二图像进行第一标定处理的同时,通过第一图像和第三图像进行第二标定处理,从而可以同时得到第一平移矩阵和第二平移矩阵,可以提高摄像头标定的效率。

通过在同一场景下,通过第一摄像头采集第一图像、通过第二摄像头采集第二图像、通过第三摄像头采集第三图像,根据第一图像和第二图像进行第一标定处理,得到第一平移矩阵,根据第一图像和第三图像进行第二标定处理,得到第二平移矩阵,可以确定用于标定处理的图像中包含的被拍摄物体的一致性,从而提高摄像头标定的准确性。

图6为另一个实施例中摄像头标定方法的流程图。如图6所示,在一个实施例中,当预设角度区间包含平角角度值时,该摄像头标定方法可以包括:

步骤602,获取摄像头模组中第一摄像头与第二摄像头之间的第一平移矩阵,及第三摄像头与第一摄像头之间的第二平移矩阵。

步骤604,根据第一平移矩阵和第二平移矩阵确定摄像头模组中每两个摄像头之间的距离值。

步骤606,获取每两个摄像头之间的距离值中最大的距离值作为目标距离值,将除目标距离值之外的两个距离值相加得到预测距离值。

当预设角度区间包含平角角度值时,则表示摄像头模组中三个摄像头的期望摆放位置为三个摄像头在一条直线上。电子设备可以在预设角度区间包含平角角度值时,获取每两个摄像头之间的距离值中最大的距离值作为目标距离值,进而将除目标距离值之外的两个距离值相加得到预测距离值。以图4中所示的摄像头模组为例,则电子设备可以将距离值c作为目标距离值,并将目标距离值之外的距离值a和距离值b相加得到预测距离值。

步骤608,当预测距离值与目标距离值之间的差值小于预设距离差值时,则确定标定测试通过。

预设距离差值可以根据实际应用需求来设定。具体地,预设距离差值不超过允许误差范围。例如,预设距离差值可以为0.5mm、1mm、2mm等不限于此。可以理解的是,当三摄像头模组中三个摄像头所形成的三角形中存在等于或接近平角角度值的角度值时,则所形成的三角形中两个摄像头之间的最大距离值应等于或接近其他两个距离值的和。电子设备可以获取预测距离值与目标距离值之间的差值,当该差值小于预设距离差值,则确定标定测试通过。

通过在摄像头模组的期望摆放位置为呈直线摆放时,获取每两个摄像头之间的距离值中最大的距离值作为目标距离值,将除目标距离值之外的两个距离值相加得到预测距离值,当预存距离值与目标距离值之间的差值小于预设距离差值时,则确定标定测试通过,可以提高摄像头标定的准确性,避免只对第一摄像头和第二摄像头之间的距离信息、及第一摄像头和第三摄像头之间的距离信息进行标定测试时导致的标定结果不准确的问题。

在一个实施例中,提供了一种摄像头标定方法,实现该方法的具体操作如下所述:

首先,电子设备获取摄像头模组中第一摄像头与第二摄像头之间的第一平移矩阵,及第三摄像头与第一摄像头之间的第二平移矩阵。

可选地,电子设备在同一场景下,通过第一摄像头获取第一图像,通过第二摄像头获取第二图像,通过第三摄像头获取第三图像,根据第一图像和第二图像进行第一标定处理,得到第一平移矩阵,根据第一图像和第三图像进行第二标定处理,得到第二平移矩阵。

接着,电子设备基于第一平移矩阵和第二平移矩阵计算摄像头模组中三个摄像头所形成的三角形中的三个角度值。

可选地,电子设备根据第一平移矩阵和第二平移矩阵确定摄像头模组中每两个摄像头之间的距离值;基于每两个摄像头之间的距离值计算三个角度值。

可选地,电子设备获取第一平移矩阵与第一预设矩阵的第一偏移值,及第二平移矩阵与第二预设矩阵之间的第二偏移值;当第一偏移值小于第一预设偏移值及第二偏移值小于第二预设偏移值时,则执行基于第一平移矩阵和第二平移矩阵计算摄像头模组中三个摄像头所形成的三角形中的三个角度值的操作。

接着,当三个角度值中存在属于预设角度区间的角度值时,则电子设备确定标定测试通过。

可选地,当三个角度值中不存在属于预设角度区间的角度值时,则电子设备确定标定测试失败。

可选地,电子设备获取三个角度值中最大的角度值,作为目标角度值;当目标角度值属于预设角度区间时,则判定存在属于预设角度区间的角度值。

可选地,当预设角度区间包含平角角度值时,电子设备根据第一平移矩阵和第二平移矩阵确定摄像头模组中每两个摄像头之间的距离值,获取每两个摄像头之间的距离值中最大的距离值作为目标距离值,将除目标距离值之外的两个距离值相加得到预测距离值,当预测距离值与目标距离值之间的差值小于预设距离差值时,则确定标定测试通过。

应该理解的是,虽然图2、5-6的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图2、5-6中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。

图7为一个实施例的摄像头标定装置的结构框图。如图7所示,该摄像头标定装置包括获取模块702、计算模块704和确定模块706,其中:

获取模块702,用于获取摄像头模组中第一摄像头与第二摄像头之间的第一平移矩阵,及第三摄像头与第一摄像头之间的第二平移矩阵;

计算模块704,用于基于第一平移矩阵和第二平移矩阵计算摄像头模组中三个摄像头所形成的三角形中的三个角度值;

确定模块706,用于当三个角度值中存在属于预设角度区间的角度值时,则确定标定测试通过。

本申请实施例提供的摄像头标定装置,用于获取摄像头模组中第一摄像头与第二摄像头之间的第一平移矩阵,及第三摄像头与第一摄像头之间的第二平移矩阵,基于第一平移矩阵和第二平移矩阵计算摄像头模组中三个摄像头所形成的三角形中的三个角度值,当三个角度值中存在属于预设角度区间的角度值时,则确定标定测试通过。由于可以将摄像头模组中三个摄像头所形成的三角形中的三个角度值与预设角度区间进行比对,以检验摄像头模组标定结果是否合格,可以提高摄像头标定的准确性。

在一个实施例中,提供摄像头标定装置还包括判定模块708,判定模块708用于获取三个角度值中最大的角度值,作为目标角度值;当目标角度值属于预设角度区间时,则判定存在属于预设角度区间的角度值。

在一个实施例中,计算模块704还可以用于根据第一平移矩阵和第二平移矩阵确定摄像头模组中每两个摄像头之间的距离值;基于每两个摄像头之间的距离值计算三个角度值。

在一个实施例中,提供的摄像头标定装置还可以包括标定模块710,标定模块710用于在同一场景下,通过第一摄像头获取第一图像,通过第二摄像头获取第二图像,通过第三摄像头获取第三图像;根据第一图像和第二图像进行第一标定处理,得到第一平移矩阵;根据第一图像和第三图像进行第二标定处理,得到第二平移矩阵。

在一个实施例中,计算模块704还可以用于获取第一平移矩阵与第一预设矩阵的第一偏移值,及第二平移矩阵与第二预设矩阵之间的第二偏移值;当第一偏移值小于第一预设偏移值及第二偏移值小于第二预设偏移值时,则执行基于第一平移矩阵和第二平移矩阵计算摄像头模组中三个摄像头所形成的三角形中的三个角度值的操作。

在一个实施例中,确定模块706还可以用于当三个角度值中不存在属于预设角度区间的角度值时,则确定标定测试失败。

在一个实施例中,确定模块706还可以用于当预设角度区间包含平角角度值时,根据第一平移矩阵和第二平移矩阵确定摄像头模组中每两个摄像头之间的距离值;获取每两个摄像头之间的距离值中最大的距离值作为目标距离值,将除目标距离值之外的两个距离值相加得到预测距离值;当预测距离值与目标距离值之间的差值小于预设距离差值时,则确定标定测试通过。

上述摄像头标定装置中各个模块的划分仅用于举例说明,在其他实施例中,可将摄像头标定装置按照需要划分为不同的模块,以完成上述摄像头标定装置的全部或部分功能。

图8为一个实施例中电子设备的内部结构示意图。如图8所示,该电子设备包括通过系统总线连接的处理器和存储器。其中,该处理器用于提供计算和控制能力,支撑整个电子设备的运行。存储器可包括非易失性存储介质及内存储器。非易失性存储介质存储有操作系统和计算机程序。该计算机程序可被处理器所执行,以用于实现以下各个实施例所提供的一种摄像头标定方法。内存储器为非易失性存储介质中的操作系统计算机程序提供高速缓存的运行环境。该电子设备可以是手机、平板电脑或者个人数字助理或穿戴式设备等。

本申请实施例中提供的摄像头标定装置中的各个模块的实现可为计算机程序的形式。该计算机程序可在电子设备上运行。该计算机程序构成的程序模块可存储在电子设备的存储器上。该计算机程序被处理器执行时,实现本申请实施例中所描述方法的步骤。

本申请实施例还提供一种电子设备。上述电子设备中包括图像处理电路,图像处理电路可以利用硬件和/或软件组件实现,可包括定义isp(imagesignalprocessing,图像信号处理)管线的各种处理单元。图9为一个实施例中图像处理电路的示意图。如图9所示,为便于说明,仅示出与本申请实施例相关的图像处理技术的各个方面。

如图9所示,图像处理电路包括isp处理器940和控制逻辑器950。成像设备910捕捉的图像数据首先由isp处理器940处理,isp处理器940对图像数据进行分析以捕捉可用于确定和/或成像设备910的一个或多个控制参数的图像统计信息。成像设备910可包括具有一个或多个透镜912和图像传感器914的摄像头。图像传感器914可包括色彩滤镜阵列(如bayer滤镜),图像传感器914可获取用图像传感器914的每个成像像素捕捉的光强度和波长信息,并提供可由isp处理器940处理的一组原始图像数据。传感器920(如陀螺仪)可基于传感器920接口类型把采集的图像处理的参数(如防抖参数)提供给isp处理器940。传感器920接口可以利用smia(standardmobileimagingarchitecture,标准移动成像架构)接口、其它串行或并行摄像头接口或上述接口的组合。

此外,图像传感器914也可将原始图像数据发送给传感器920,传感器920可基于传感器920接口类型把原始图像数据提供给isp处理器940,或者传感器920将原始图像数据存储到图像存储器930中。

isp处理器940按多种格式逐个像素地处理原始图像数据。例如,每个图像像素可具有8、10、12或14比特的位深度,isp处理器940可对原始图像数据进行一个或多个图像处理操作、收集关于图像数据的统计信息。其中,图像处理操作可按相同或不同的位深度精度进行。

isp处理器940还可从图像存储器930接收图像数据。例如,传感器920接口将原始图像数据发送给图像存储器930,图像存储器930中的原始图像数据再提供给isp处理器940以供处理。图像存储器930可为存储器装置的一部分、存储设备、或电子设备内的独立的专用存储器,并可包括dma(directmemoryaccess,直接直接存储器存取)特征。

当接收到来自图像传感器914接口或来自传感器920接口或来自图像存储器930的原始图像数据时,isp处理器940可进行一个或多个图像处理操作,如时域滤波。处理后的图像数据可发送给图像存储器930,以便在被显示之前进行另外的处理。isp处理器940从图像存储器930接收处理数据,并对所述处理数据进行原始域中以及rgb和ycbcr颜色空间中的图像数据处理。isp处理器940处理后的图像数据可输出给显示器970,以供用户观看和/或由图形引擎或gpu(graphicsprocessingunit,图形处理器)进一步处理。此外,isp处理器940的输出还可发送给图像存储器930,且显示器970可从图像存储器930读取图像数据。在一个实施例中,图像存储器930可被配置为实现一个或多个帧缓冲器。此外,isp处理器940的输出可发送给编码器/解码器960,以便编码/解码图像数据。编码的图像数据可被保存,并在显示于显示器970设备上之前解压缩。编码器/解码器960可由cpu或gpu或协处理器实现。

isp处理器940确定的统计数据可发送给控制逻辑器950单元。例如,统计数据可包括自动曝光、自动白平衡、自动聚焦、闪烁检测、黑电平补偿、透镜912阴影校正等图像传感器914统计信息。控制逻辑器950可包括执行一个或多个例程(如固件)的处理器和/或微控制器,一个或多个例程可根据接收的统计数据,确定成像设备910的控制参数及isp处理器940的控制参数。例如,成像设备910的控制参数可包括传感器920控制参数(例如增益、曝光控制的积分时间、防抖参数等)、摄像头闪光控制参数、透镜912控制参数(例如聚焦或变焦用焦距)、或这些参数的组合。isp控制参数可包括用于自动白平衡和颜色调整(例如,在rgb处理期间)的增益水平和色彩校正矩阵,以及透镜912阴影校正参数。

在本申请实施例中,图像处理电路可以包括至少三个成像设备(摄像头)910,运用图9中图像处理技术可实现上述摄像头标定方法。

本申请实施例还提供了一种计算机可读存储介质。一个或多个包含计算机可执行指令的非易失性计算机可读存储介质,当所述计算机可执行指令被一个或多个处理器执行时,使得所述处理器执行摄像头标定方法的步骤。

一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行摄像头标定方法。

本申请实施例所使用的对存储器、存储、数据库或其它介质的任何引用可包括非易失性和/或易失性存储器。合适的非易失性存储器可包括只读存储器(rom)、可编程rom(prom)、电可编程rom(eprom)、电可擦除可编程rom(eeprom)或闪存。易失性存储器可包括随机存取存储器(ram),它用作外部高速缓冲存储器。作为说明而非局限,ram以多种形式可得,诸如静态ram(sram)、动态ram(dram)、同步dram(sdram)、双数据率sdram(ddrsdram)、增强型sdram(esdram)、同步链路(synchlink)dram(sldram)、存储器总线(rambus)直接ram(rdram)、直接存储器总线动态ram(drdram)、以及存储器总线动态ram(rdram)。

以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1