本发明涉及经济作物产量预测领域,并且更具体地,涉及一种确定甜菜气象产量的方法和系统。
背景技术:
甜菜产量通常分为生物产量和经济产量。生物产量简称生物量,是指甜菜在各个生育周期内通过光合作用和吸收作用,即通过物质和能量的转化所生产和累积的各种有机物的总量,计算生物量时通常不包括根系。经济产量是指栽培目的所需要甜菜粒的收获量,即一般所指的产量。通常,经济产量的高低与生物量高低成正比。
甜菜生育期的长短,除主要决定于甜菜的遗传性外,还由于栽培地区的气候条件和栽培技术等因素而有差异。如秋播、冬播时因气温低,生长发育缓慢,生育期较长;春播、夏播时因气温高,生长发育快,生育期较短。同一品种在不同纬度地区种植,由于温度、光照的差异,生育期也随之发生变化。
由于长时间的产量波动不仅跟气象指标有关,也与甜菜品种更新,社会经济变革等密切相关,所以在长时间序列的作物产量与气象指标关系的观测统计研究中,一般把甜菜的产量分解为趋势产量、气象产量和随机误差3部分,趋势产量是反映历史时期生产力发展水平的长周期产量分量,也被称为技术产量,气象产量是受气候要素为主的短周期变化因子(农业气候灾害为主)影响的波动产量分量。因此甜菜气象产量是甜菜产量预测中的重点。
现有技术中对甜菜气象产量的预测仅考虑了甜菜的全生育周期气候条件变化,然而甜菜在不同的生长发育过程中对气候条件的要求不同,不同地域影响作物生长发育的关键时期和气象因素也不同,仅仅考虑全生育周期气候条件对甜菜气象产量的影响无法及时、准确预测气候条件下甜菜气象产量波动。
因此,需要一种技术,能够根据甜菜不同的生育时期受气候条件的影响而造成的气象生物量的不同,通过甜菜每个生育时期气象生物量变化确定甜菜的气象产量。
技术实现要素:
为了解决现有技术中只考虑全生育周期气候条件对甜菜气象产量的影响而无法及时、准确预测气候条件下甜菜气象产量波动的技术问题,本发明提供一种确定甜菜气象产量的方法,所述方法包括:
基于影响甜菜成长的气象指标过去n年的数据和当年已知时间的数据,根据设置的气象指标预测模型,确定甜菜当年每个生育时期的气象指标的数据,其中,所述气象指标包括日最低温度、日最高温度、土壤湿度和风速;
基于甜菜当年每个生育时期的气象指标的数据,根据甜菜每个生育时期的气象指标-气象生物量预测模型,确定甜菜当年每个生育时期的气象生物量;
基于甜菜当年每个生育时期的气象生物量,根据甜菜气象生物量-气象产量预测模型,确定甜菜当年的气象产量。
进一步地,所述方法在基于影响甜菜成长的气象指标过去n年的数据和当年已知时间的数据,根据设置的气象指标预测模型,确定甜菜当年每个生育时期的气象指标的数据之前还包括:
根据甜菜的生育特征,将甜菜的成长阶段划分为若干个生育时期;
采集影响甜菜成长的气象指标过去n年的数据和当年已知时间的数据、每个生育时期的生物量过去n年的数据、经济产量过去n年的数据,以及甜菜每个生育时期起止时间的历史数据;
根据甜菜每个生育时期起止时间的历史数据确定当年每个生育时期的起止时间;
基于甜菜每个生育时期的生物量过去n年的数据确定甜菜每个生育时期的气象生物量过去n年的数据;
基于甜菜每个生育时期的气象指标过去n年的数据和气象生物量过去n年的数据确定甜菜每个生育时期的气象指标-气象生物量预测模型;
基于甜菜经济产量过去n年的数据确定甜菜气象产量过去n年的数据;
基于甜菜每个生育时期的气象生物量过去n年的数据和甜菜气象产量过去n年的数据确定甜菜的气象生物量-气象产量预测模型。
进一步地,基于影响甜菜成长的气象指标过去n年的数据和当年已知时间的数据,根据设置的气象指标预测模型,确定甜菜当年每个生育时期的气象指标数据包括:
基于影响甜菜成长的气象指标过去n年的数据,根据设置的气象指标预测模型,确定当年未知时间的气象指标数据,其中:
日最低温度预测模型的计算公式为:
当根据某天在过去n年的日最高温度确定的日最高温度标准差大于或等于根据某天在过去n年的日最低温度确定的日最低温度标准差时:
tnmin=μmin+σmin×χ
当根据某天在过去n年的日最高温度确定的日最高温度标准差小于根据某天在过去n年的日最低温度确定的日最低温度标准差时:
式中,tnmin是当年未知时间中的某天的日最低温度,thmax是当年未知时间中的某天在过去n年的日最高温度中的最大值,μmin是当年未知时间中的某天所在月份在过去n年的日最低温度的均值,μmax是当年未知时间中的某天所在月份在过去n年的日最高温度的均值,σmin是当年未知时间中的某天所在月份在过去n年的日最低温度的标准差,σmax是当年未知时间中的某天所在月份在过去n年的日最高温度的标准差,χ是产生的每日标准正态偏差,根据两个随机数rnd1和rnd2得到;
日最高温度预测模型的计算公式为:
当根据某天在过去n年的日最高温度确定的日最高温度标准差大于或等于根据某天在过去n年的日最低温度确定的日最低温度标准差时:
当根据某天在过去n年的日最高温度确定的日最高温度标准差小于根据某天在过去n年的日最低温度确定的日最低温度标准差时:
tnmax=μmax+σmax×χ
式中,tnmax是当年未知时间中的某天的日最高温度,thmin是当年未知时间中的某天在过去n年的日最低温度中的最小值,μmin是当年未知时间中的某天所在月份在过去n年的日最低温度的均值,μmax是当年未知时间中的某天所在月份在过去n年的日最高温度的均值,σmin是当年未知时间中的某天所在月份在过去n年的日最低温度的标准差,σmax是当年未知时间中的某天所在月份在过去n年的日最高温度的标准差,χ是产生的每日标准正态偏差,根据两个随机数rnd1和rnd2得到;
土壤湿度预测模型的计算公式为:
rhumon=rhmon+(1-rhmon)×exp(rhmon-1)
rhlmon=rhmon×(1-exp(-rhmon))
当
rh=rhlmon+[rnd1×(rhumon-rhlmon)×(rhmon-rhlmon)]0.5
当
式中,rh是当年未知时间中的某天的日平均相对湿度,rnd1是一个随机数,rhmon是当年未知时间中的某天所在月份在过去n年的日平均相对湿度的平均值,rhumon是当年未知时间中的某天所在月份在过去n年的日平均相对湿度中的最大值,rhlmon是当年未知时间中的某天所在月份在过去n年的日平均相对湿度中的最小值;
风速预测模型的计算公式为:
式中,u是当年未知时间中的某天的风速,μu是当年未知时间中的某天所在月份在过去n年的日风速的均值,σu是当年未知时间中的某天所在月份在过去n年的日风速的标准差,ξ是当年未知时间中的某天所在月份在过去n年的日风速的偏度系数,χ是产生的每日标准正态偏差,根据两个随机数rnd1和rnd2得到;
将当年已知时间的气象指标数据与通过气象指标预测模型确定的当年未知时间的气象指标数据按照甜菜每个生育时期的起止时间进行划分,即得到甜菜每个生育时期的气象指标数据。
进一步地,所述基于甜菜每个生育时期的生物量过去n年的数据确定甜菜每个生育时期的气象生物量过去n年的数据包括:
将甜菜每个生育时期的生物量过去n年的数据按时间顺序生成生物量序列数据;
以i年为滑动步长,运用直线滑动平均法对甜菜每个生育时期的每i年的生物量进行统计回归分析,得到j组一元线性回归方程,其中,1≤i≤n,1≤j≤i,i、j和n均是自然数;
基于j组一元线性回归方程确定甜菜每个生育时期每年的j个生物量的模拟值;
根据甜菜每个生育时期每年的j个生物量的模拟值确定每年的生物量的模拟值的平均值,并将其作为甜菜每个生育时期每年的趋势生物量;
将甜菜每个生育时期的每年的生物量和趋势生物量相减即为甜菜每个生育时期的每年的气象生物量。
进一步地,所述基于甜菜每个生育时期的气象指标过去n年的数据和气象生物量过去n年的数据确定甜菜每个生育时期的气象指标-气象生物量预测模型包括:
基于甜菜每个生育时期的气象指标过去n年的数据和气象生物量过去n年的数据确定每个气象指标与气象生物量的核函数、每个核函数的权重,以及根据核函数确定求取气象生物量的偏差值;
基于每个气象指标与气象生物量的核函数、每个核函数的权重,以及偏差值确定甜菜每个生育时期的气象指标-气象生物量预测模型,其计算公式为:
式中,yi是甜菜当年第i个生育时期的气象生物量,
进一步地,所述基于甜菜经济产量过去n年的数据确定甜菜气象产量过去n年的数据包括:
将甜菜经济产量过去n年的数据按时间顺序生成经济产量序列数据;
以i年为滑动步长,运用直线滑动平均法对甜菜每i年的经济产量进行统计回归分析,得到j组一元线性回归方程,其中,1≤i≤n,1≤j≤i,i、j和n均是自然数;
基于j组一元线性回归方程确定甜菜每年的j个经济产量的模拟值;
根据甜菜每年的j个经济产量的模拟值确定每年的经济产量的模拟值的平均值,并将其作为甜菜每年的趋势经济产量;
将甜菜每年的经济产量和趋势经济产量相减即为甜菜每年的气象产量。
进一步地,基于甜菜每个生育时期的气象生物量过去n年的数据和甜菜气象产量过去n年的数据确定甜菜气象生物量-气象产量的预测模型包括:
基于甜菜每个生育时期的气象生物量过去n年的数据和甜菜气象产量过去n年的数据确定每个生育时期的气象生物量与气象产量的核函数、每个核函数的权重,以及根据核函数确定求取气象产量的偏差值;
基于甜菜每个生育时期的气象生物量与气象产量的核函数、每个核函数的权重,以及偏差值确定甜菜气象生物量-气象产量预测模型,其计算公式为:
式中,y是甜菜当年的气象产量,
根据本发明的另一方面,本发明提供一种确定甜菜气象产量的系统,所述系统包括:
甜菜气象指标单元,其用于基于影响甜菜成长的气象指标过去n年的数据和当年已知时间的数据,根据设置的气象指标预测模型,确定甜菜当年每个生育时期的气象指标的数据,其中,所述气象指标包括日最低温度、日最高温度、土壤湿度和风速;
甜菜气象生物量单元,其用于基于甜菜当年每个生育时期的气象指标的数据,根据甜菜每个生育时期的气象指标-气象生物量预测模型,确定甜菜当年每个生育时期的气象生物量;
甜菜气象产量单元,其用于基于甜菜当年每个生育时期的气象生物量,根据甜菜气象生物量-气象产量预测模型,确定甜菜当年的气象产量。
进一步地,系统还包括:
甜菜生育期划分单元,其用于根据甜菜的生育特征,将甜菜的成长阶段划分为若干个生育时期;
数据采集单元,其用于采集影响甜菜成长的气象指标过去n年的数据和当年已知时间的数据、每个生育时期的生物量过去n年的数据、经济产量过去n年的数据,以及甜菜每个生育时期起止时间的历史数据;
生育期时间确定单元,其用于根据甜菜每个生育时期起止时间的历史数据确定当年每个生育时期的起止时间;
第一数据单元,其用于基于甜菜每个生育时期的生物量过去n年的数据确定甜菜每个生育时期的气象生物量过去n年的数据;
第一模型单元,其用于基于甜菜每个生育时期的气象指标过去n年的数据和气象生物量过去n年的数据确定甜菜每个生育时期的气象指标-气象生物量预测模型;
第二数据单元,其用于基于甜菜经济产量过去n年的数据确定甜菜气象产量过去n年的数据;
第二模型单元,其用于基于甜菜每个生育时期的气象生物量过去n年的数据和甜菜气象产量过去n年的数据确定甜菜的气象生物量-气象产量预测模型。
进一步地,所述甜菜气象指标单元包括:
未知气象指标单元,其用于基于影响甜菜成长的气象指标过去n年的数据,根据设置的气象指标预测模型,确定当年未知时间的气象指标数据,其中,其中,所述日最低温度、日最高温度、土壤湿度和风速预测模型的计算公式与确定甜菜气象产量的方法中的相同,此处不再赘述。
指标确定单元,其用于将当年已知时间的气象指标数据与通过气象指标预测模型确定的当年未知时间的气象指标数据按照甜菜每个生育时期的起止时间进行划分,即得到甜菜每个生育时期的气象指标数据。
进一步地,所述第一数据单元包括:
第一序列单元,其用于将甜菜每个生育时期的生物量过去n年的数据按时间顺序生成生物量序列数据;
第一方程组单元,其用于以i年为滑动步长,运用直线滑动平均法对甜菜每个生育时期的每i年的生物量进行统计回归分析,得到j组一元线性回归方程,其中,1≤i≤n,1≤j≤i,i、j和n均是自然数;
第一模拟值单元,其用于基于j组一元线性回归方程确定甜菜每个生育时期每年的j个生物量的模拟值;
第一趋势值单元,其用于根据甜菜每个生育时期每年的j个生物量的模拟值确定每年的生物量的模拟值的平均值,并将其作为甜菜每个生育时期每年的趋势生物量;
第一结果单元,其用于将甜菜每个生育时期的每年的生物量和趋势生物量相减即为甜菜每个生育时期的每年的气象生物量。
进一步地,所述第一模型单元包括:
第一参数单元,其用于基于甜菜每个生育时期的气象指标过去n年的数据和气象生物量过去n年的数据确定每个气象指标与气象生物量的核函数、每个核函数的权重,以及根据核函数确定求取气象生物量的偏差值;
第一公式单元,其用于基于每个气象指标与气象生物量的核函数、每个核函数的权重,以及偏差值确定甜菜每个生育时期的气象指标-气象生物量预测模型,其计算公式为:
式中,yi是甜菜当年第i个生育时期的气象生物量,
进一步地,所述第二数据单元包括:
第二序列单元,其用于将甜菜经济产量过去n年的数据按时间顺序生成经济产量序列数据;
第二方程组单元,其用于以i年为滑动步长,运用直线滑动平均法对甜菜每i年的经济产量进行统计回归分析,得到j组一元线性回归方程,其中,1≤i≤n,1≤j≤i,i、j和n均是自然数;
第二模拟值单元,其用于基于j组一元线性回归方程确定甜菜每年的j个经济产量的模拟值;
第二趋势值单元,其用于根据甜菜每年的j个经济产量的模拟值确定每年的经济产量的模拟值的平均值,并将其作为甜菜每年的趋势经济产量;
第二结果单元,将甜菜每年的经济产量和趋势经济产量相减即为甜菜每年的气象产量。
进一步地,所述第二模型单元包括:
第二参数单元,其用于基于甜菜每个生育时期的气象生物量过去n年的数据和甜菜气象产量过去n年的数据确定每个生育时期的气象生物量与气象产量的核函数、每个核函数的权重,以及根据核函数确定求取气象产量的偏差值;
第二公式单元,其用于基于甜菜每个生育时期的气象生物量与气象产量的核函数、每个核函数的权重,以及偏差值确定甜菜气象生物量-气象产量预测模型,其计算公式为:
式中,y是甜菜当年的气象产量,
本发明技术方案提供的确定甜菜气象产量的方法和系统首先将甜菜依据生育特征,划分为若干个生育时期,在不同的生育时期内结合历史上主要影响因素的气象指标信息,分别与历史上相同生育时期的生物量建立气象指标-气象生物量预测模型,其次应用历史上相同生育时期的生物量与历史上的气象产量建立气象生物量-气象产量预测模型;接着,根据当前作物所在区域影响作物生长的主要气象指标信息,主要包括历史数据和当年已知时间的数据,通过气象指标预测模型,预测出当年甜菜气象指标信息,最后通过气象指标-气象生物量预测模型预测出甜菜当年每个生育时期的气象生物量,通过气象生物量-气象产量预测模型预测出当年甜菜气象产量。本发明所述的确定甜菜气象产量的方法和系统具有如下有益效果:
1、通过建立甜菜每个生育时期的气象指标-气象生物量预测模型,能够实现甜菜每个生育时期的气象生物量预测,从而增加了甜菜气象产量预测的准确性;
2、能够根据当年甜菜的气象信息和气象生物量等数据的实时更新,动态调整气象指标预测模型、气象指标-气象生物量预测模型以及气象生物量-气象产量预测模型的结果,实现甜菜气象产量的动态发布;
3、能够全面、系统、及时提供我国甜菜气象产量波动过程,提供直观、准确的甜菜气象产量预测结果,为保障我国的甜菜市场供求平衡提供技术支撑。
附图说明
通过参考下面的附图,可以更为完整地理解本发明的示例性实施方式:
图1为根据本发明优选实施方式的确定甜菜气象产量的方法的流程图;
图2为根据本发明优选实施方式的确定甜菜气象产量的系统的结构示意图。
具体实施方式
现在参考附图介绍本发明的示例性实施方式,然而,本发明可以用许多不同的形式来实施,并且不局限于此处描述的实施例,提供这些实施例是为了详尽地且完全地公开本发明,并且向所属技术领域的技术人员充分传达本发明的范围。对于表示在附图中的示例性实施方式中的术语并不是对本发明的限定。在附图中,相同的单元/元件使用相同的附图标记。
除非另有说明,此处使用的术语(包括科技术语)对所属技术领域的技术人员具有通常的理解含义。另外,可以理解的是,以通常使用的词典限定的术语,应当被理解为与其相关领域的语境具有一致的含义,而不应该被理解为理想化的或过于正式的意义。
图1为根据本发明优选实施方式的确定甜菜气象产量的方法的流程图。如图1所示,根据本优选实施方式所述的确定甜菜气象产量的方法100从步骤101开始。
在步骤101,根据甜菜的生育特征,将甜菜的成长阶段划分为若干个生育时期。在本优选实施方式中,将甜菜的成长阶段划分为播种出苗期、茎叶繁茂期、块茎膨大增长期和糖分积累期4个生育时期。
在步骤102,采集影响甜菜成长的气象指标过去n年的数据和当年已知时间的数据、每个生育时期的生物量过去n年的数据、经济产量过去n年的数据,以及甜菜每个生育时期起止时间的历史数据。
在本优选实施方式中,历史数据主要从各大作物监测平台的数据库中获取,当年已知时间的数据主要通过传感器监测获得,其中,温度通过温度传感器监测获得,计算得到每日平均温度,土壤湿度通过湿度传感器监测获得,风速通过风速传感器监测获得。实践中,所述甜菜生物量是指甜菜在每个生育时期的成长物用低温干燥使其达到的恒定重量。
在步骤103,根据甜菜每个生育时期起止时间的历史数据确定当年每个生育时期的起止时间。在优选实施方式中,取甜菜每个生育时期起止时间中次数最多的时间作为当年生育时期的起止时间。当有两个或两个以上日期的次数相同时,随机选择其中一个日期。
在步骤104,基于甜菜每个生育时期的生物量过去n年的数据确定甜菜每个生育时期的气象生物量过去n年的数据。
在步骤105,基于甜菜每个生育时期的气象指标过去n年的数据和气象生物量过去n年的数据确定甜菜每个生育时期的气象指标-气象生物量预测模型。
在步骤106,基于甜菜经济产量过去n年的数据确定甜菜气象产量过去n年的数据。实践中,所述甜菜经济产量是指按照甜菜的栽培目的所收获的主产品甜菜的干物质重量。
在步骤107,基于甜菜每个生育时期的气象生物量过去n年的数据和甜菜气象产量过去n年的数据确定甜菜的气象生物量-气象产量预测模型。
在步骤108,基于影响甜菜成长的气象指标过去n年的数据和当年已知时间的数据,根据设置的气象指标预测模型,确定甜菜当年每个生育时期的气象指标的数据,其中,所述气象指标包括日最低温度、日最高温度、土壤湿度和风速。
在步骤109,基于甜菜当年每个生育时期的气象指标的数据,根据甜菜每个生育时期的气象指标-气象生物量预测模型,确定甜菜当年每个生育时期的气象生物量。
在步骤110,基于甜菜当年每个生育时期的气象生物量,根据甜菜气象生物量-气象产量预测模型,确定甜菜当年的气象产量。
优选地,基于影响甜菜成长的气象指标过去n年的数据和当年已知时间的数据,根据设置的气象指标预测模型,确定甜菜当年每个生育时期的气象指标数据包括:
基于影响甜菜成长的气象指标过去n年的数据,根据设置的气象指标预测模型,确定当年未知时间的气象指标数据,其中:
日最低温度预测模型的计算公式为:
当根据某天在过去n年的日最高温度确定的日最高温度标准差大于或等于根据某天在过去n年的日最低温度确定的日最低温度标准差时:
tnmin=μmin+σmin×χ
当根据某天在过去n年的日最高温度确定的日最高温度标准差小于根据某天在过去n年的日最低温度确定的日最低温度标准差时:
式中,tnmin是当年未知时间中的某天的日最低温度,thmax是当年未知时间中的某天在过去n年的日最高温度中的最大值,μmin是当年未知时间中的某天所在月份在过去n年的日最低温度的均值,μmax是当年未知时间中的某天所在月份在过去n年的日最高温度的均值,σmin是当年未知时间中的某天所在月份在过去n年的日最低温度的标准差,σmax是当年未知时间中的某天所在月份在过去n年的日最高温度的标准差,χ是产生的每日标准正态偏差,根据两个随机数rnd1和rnd2得到;
日最高温度预测模型的计算公式为:
当根据某天在过去n年的日最高温度确定的日最高温度标准差大于或等于根据某天在过去n年的日最低温度确定的日最低温度标准差时:
当根据某天在过去n年的日最高温度确定的日最高温度标准差小于根据某天在过去n年的日最低温度确定的日最低温度标准差时:
tnmax=μmax+σmax×χ
式中,tnmax是当年未知时间中的某天的日最高温度,thmin是当年未知时间中的某天在过去n年的日最低温度中的最小值,μmin是当年未知时间中的某天所在月份在过去n年的日最低温度的均值,μmax是当年未知时间中的某天所在月份在过去n年的日最高温度的均值,σmin是当年未知时间中的某天所在月份在过去n年的日最低温度的标准差,σmax是当年未知时间中的某天所在月份在过去n年的日最高温度的标准差,χ是产生的每日标准正态偏差,根据两个随机数rnd1和rnd2得到;
土壤湿度预测模型的计算公式为:
rhumon=rhmon+(1-rhmon)×exp(rhmon-1)
rhlmon=rhmon×(1-exp(-rhmon))
当
rh=rhlmon+[rnd1×(rhumon-rhlmon)×(rhmon-rhlmon)]0.5
当
式中,rh是当年未知时间中的某天的日平均相对湿度,rnd1是一个随机数,rhmon是当年未知时间中的某天所在月份在过去n年的日平均相对湿度的平均值,rhumon是当年未知时间中的某天所在月份在过去n年的日平均相对湿度中的最大值,rhlmon是当年未知时间中的某天所在月份在过去n年的日平均相对湿度中的最小值;
风速预测模型的计算公式为:
式中,u是当年未知时间中的某天的风速,μu是当年未知时间中的某天所在月份在过去n年的日风速的均值,σu是当年未知时间中的某天所在月份在过去n年的日风速的标准差,ξ是当年未知时间中的某天所在月份在过去n年的日风速的偏度系数,χ是产生的每日标准正态偏差,根据两个随机数rnd1和rnd2得到;
将当年已知时间的气象指标数据与通过气象指标预测模型确定的当年未知时间的气象指标数据按照甜菜每个生育时期的起止时间进行划分,即得到甜菜每个生育时期的气象指标数据。
优选地,所述基于甜菜每个生育时期的生物量过去n年的数据确定甜菜每个生育时期的气象生物量过去n年的数据包括:
将甜菜每个生育时期的生物量过去n年的数据按时间顺序生成生物量序列数据;
以i年为滑动步长,运用直线滑动平均法对甜菜每个生育时期的每i年的生物量进行统计回归分析,得到j组一元线性回归方程,其中,1≤i≤n,1≤j≤i,i、j和n均是自然数;
基于j组一元线性回归方程确定甜菜每个生育时期每年的j个生物量的模拟值;
根据甜菜每个生育时期每年的j个生物量的模拟值确定每年的生物量的模拟值的平均值,并将其作为甜菜每个生育时期每年的趋势生物量;
将甜菜每个生育时期的每年的生物量和趋势生物量相减即为甜菜每个生育时期的每年的气象生物量。
优选地,所述基于甜菜每个生育时期的气象指标过去n年的数据和气象生物量过去n年的数据确定甜菜每个生育时期的气象指标-气象生物量预测模型包括:
基于甜菜每个生育时期的气象指标过去n年的数据和气象生物量过去n年的数据确定每个气象指标与气象生物量的核函数、每个核函数的权重,以及根据核函数确定求取气象生物量的偏差值;
基于每个气象指标与气象生物量的核函数、每个核函数的权重,以及偏差值确定甜菜每个生育时期的气象指标-气象生物量预测模型,其计算公式为:
式中,yi是甜菜当年第i个生育时期的气象生物量,
在本优选实施方式中,甜菜的成长阶段分为播种出苗期、茎叶繁茂期、块茎膨大增长期和糖分积累期4个生育时期。为了使每个生育时期的气象指标-气象生物量预测模型更为准确,对于根据历史经验设置的最低温度值和最高温度值、以及稻田日水层高度都进行了更为具体的区间划分,具体地:
甜菜播种出苗期的气象指标-生物量预测模型的计算公式为:
式中,ybc为播种出苗期气象生物量,bctdl、
甜菜茎叶繁茂期的气象指标-生物量预测模型的计算公式为:
式中,yjf为茎叶繁茂期气象生物量,jftdl、
甜菜块茎膨大增长期的气象指标-生物量预测模型的计算公式为:
式中,ypz为块茎膨大增长期气象生物量,pztdl、
甜菜糖分积累期的气象指标-生物量预测模型的计算公式为:
式中,ytj为糖分积累期气象生物量,tjtdl、
优选地,所述基于甜菜经济产量过去n年的数据确定甜菜气象产量过去n年的数据包括:
将甜菜经济产量过去n年的数据按时间顺序生成经济产量序列数据;
以i年为滑动步长,运用直线滑动平均法对甜菜每i年的经济产量进行统计回归分析,得到j组一元线性回归方程,其中,1≤i≤n,1≤j≤i,i、j和n均是自然数;
基于j组一元线性回归方程确定甜菜每年的j个经济产量的模拟值;
根据甜菜每年的j个经济产量的模拟值确定每年的经济产量的模拟值的平均值,并将其作为甜菜每年的趋势经济产量;
将甜菜每年的经济产量和趋势经济产量相减即为甜菜每年的气象产量。
优选地,基于甜菜每个生育时期的气象生物量过去n年的数据和甜菜气象产量过去n年的数据确定甜菜气象生物量-气象产量的预测模型包括:
基于甜菜每个生育时期的气象生物量过去n年的数据和甜菜气象产量过去n年的数据确定每个生育时期的气象生物量与气象产量的核函数、每个核函数的权重,以及根据核函数确定求取气象产量的偏差值;
基于甜菜每个生育时期的气象生物量与气象产量的核函数、每个核函数的权重,以及偏差值确定甜菜气象生物量-气象产量预测模型,其计算公式为:
式中,y是甜菜当年的气象产量,
在本优选实施方式中,甜菜的成长阶段分为播种出苗期、茎叶繁茂期、块茎膨大增长期和糖分积累期4个生育时期。与之相对应,所述甜菜每个生育时期的气象生物量与气象产量的预测模型的计算公式为:
式中,z为甜菜气象产量,ybc、
图2为根据本发明优选实施方式的确定甜菜气象产量的系统的结构示意图。如图2所示,本优选实施方式所述的确定甜菜气象产量的系统200包括:
甜菜生育期划分单元201,其用于根据甜菜的生育特征,将甜菜的成长阶段划分为若干个生育时期;
生育期时间确定单元202,其用于根据甜菜每个生育时期起止时间的历史数据确定当年每个生育时期的起止时间。
数据采集单元203,其用于采集影响甜菜成长的气象指标过去n年的数据和当年已知时间的数据、每个生育时期的生物量过去n年的数据和经济产量过去n年的数据。
第一数据单元204,其用于基于甜菜每个生育时期的生物量过去n年的数据确定甜菜每个生育时期的气象生物量过去n年的数据。
第一模型单元205,其用于基于甜菜每个生育时期的气象指标过去n年的数据和气象生物量过去n年的数据确定甜菜每个生育时期的气象指标-气象生物量预测模型。
第二数据单元206,其用于基于甜菜经济产量过去n年的数据确定甜菜气象产量过去n年的数据。
第二模型单元207,其用于基于甜菜每个生育时期的气象生物量过去n年的数据和甜菜气象产量过去n年的数据确定甜菜的气象生物量-气象产量预测模型。
甜菜气象指标单元208,其用于基于影响甜菜成长的气象指标过去n年的数据和当年已知时间的数据,根据设置的气象指标预测模型,确定甜菜当年每个生育时期的气象指标的数据,其中,所述气象指标包括日最低温度、日最高温度、土壤湿度和风速。
甜菜气象生物量单元209,其用于基于甜菜当年每个生育时期的气象指标的数据,根据甜菜每个生育时期的气象指标-气象生物量预测模型,确定甜菜当年每个生育时期的气象生物量。
甜菜气象产量单元210,其用于基于甜菜当年每个生育时期的气象生物量,根据甜菜气象生物量-气象产量预测模型,确定甜菜当年的气象产量。
优选地,所述甜菜气象指标单元208包括:
未知气象指标单元281,其用于基于影响甜菜成长的气象指标过去n年的数据,根据设置的气象指标预测模型,确定当年未知时间的气象指标数据,其中,所述日最低温度、日最高温度、土壤湿度和风速预测模型的计算公式与确定甜菜气象产量的方法中的相同,此处不再赘述。
指标确定单元282,其用于将当年已知时间的气象指标数据与通过气象指标预测模型确定的当年未知时间的气象指标数据按照甜菜每个生育时期的起止时间进行划分,即得到甜菜每个生育时期的气象指标数据。
优选地,所述第一数据单元204包括:
第一序列单元241,其用于将甜菜每个生育时期的生物量过去n年的数据按时间顺序生成生物量序列数据;
第一方程组单元242,其用于以i年为滑动步长,运用直线滑动平均法对甜菜每个生育时期的每i年的生物量进行统计回归分析,得到j组一元线性回归方程,其中,1≤i≤n,1≤j≤i,i、j和n均是自然数;
第一模拟值单元243,其用于基于j组一元线性回归方程确定甜菜每个生育时期每年的j个生物量的模拟值;
第一趋势值单元244,其用于根据甜菜每个生育时期每年的j个生物量的模拟值确定每年的生物量的模拟值的平均值,并将其作为甜菜每个生育时期每年的趋势生物量;
第一结果单元245,其用于将甜菜每个生育时期的每年的生物量和趋势生物量相减即为甜菜每个生育时期的每年的气象生物量。
优选地,所述第一模型单元205包括:
第一参数单元251,其用于基于甜菜每个生育时期的气象指标过去n年的数据和气象生物量过去n年的数据确定每个气象指标与气象生物量的核函数、每个核函数的权重,以及根据核函数确定求取气象生物量的偏差值;
第一公式单元252,其用于基于每个气象指标与气象生物量的核函数、每个核函数的权重,以及偏差值确定甜菜每个生育时期的气象指标-气象生物量预测模型,其计算公式为:
式中,yi是甜菜当年第i个生育时期的气象生物量,
优选地,所述第二数据单元206包括:
第二序列单元261,其用于将甜菜经济产量过去n年的数据按时间顺序生成经济产量序列数据;
第二方程组单元262,其用于以i年为滑动步长,运用直线滑动平均法对甜菜每i年的经济产量进行统计回归分析,得到j组一元线性回归方程,其中,1≤i≤n,1≤j≤i,i、j和n均是自然数;
第二模拟值单元263,其用于基于j组一元线性回归方程确定甜菜每年的j个经济产量的模拟值;
第二趋势值单元264,其用于根据甜菜每年的j个经济产量的模拟值确定每年的经济产量的模拟值的平均值,并将其作为甜菜每年的趋势经济产量;
第二结果单元265,将甜菜每年的经济产量和趋势经济产量相减即为甜菜每年的气象产量。
优选地,所述第二模型单元207包括:
第二参数单元271,其用于基于甜菜每个生育时期的气象生物量过去n年的数据和甜菜气象产量过去n年的数据确定每个生育时期的气象生物量与气象产量的核函数、每个核函数的权重,以及根据核函数确定求取气象产量的偏差值;
第二公式单元272,其用于基于甜菜每个生育时期的气象生物量与气象产量的核函数、每个核函数的权重,以及偏差值确定甜菜气象生物量-气象产量预测模型,其计算公式为:
式中,y是甜菜当年的气象产量,
已经通过参考少量实施方式描述了本发明。然而,本领域技术人员所公知的,正如附带的专利权利要求所限定的,除了本发明以上公开的其他的实施例等同地落在本发明的范围内。
通常地,在权利要求中使用的所有术语都根据他们在技术领域的通常含义被解释,除非在其中被另外明确地定义。所有的参考“一个/所述/该[装置、组件等]”都被开放地解释为所述装置、组件等中的至少一个实例,除非另外明确地说明。这里公开的任何方法的步骤都没必要以公开的准确的顺序运行,除非明确地说明。